首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   712篇
  免费   47篇
  2021年   4篇
  2019年   5篇
  2018年   9篇
  2017年   5篇
  2016年   9篇
  2015年   11篇
  2014年   17篇
  2013年   37篇
  2012年   36篇
  2011年   37篇
  2010年   30篇
  2009年   20篇
  2008年   38篇
  2007年   43篇
  2006年   35篇
  2005年   31篇
  2004年   42篇
  2003年   48篇
  2002年   33篇
  2001年   13篇
  2000年   11篇
  1999年   11篇
  1998年   14篇
  1997年   11篇
  1996年   5篇
  1995年   6篇
  1994年   8篇
  1993年   7篇
  1992年   18篇
  1991年   14篇
  1990年   16篇
  1989年   13篇
  1988年   16篇
  1987年   9篇
  1986年   10篇
  1985年   4篇
  1984年   16篇
  1983年   8篇
  1982年   7篇
  1981年   10篇
  1980年   6篇
  1978年   7篇
  1977年   3篇
  1976年   2篇
  1975年   2篇
  1974年   4篇
  1972年   2篇
  1969年   2篇
  1967年   2篇
  1966年   2篇
排序方式: 共有759条查询结果,搜索用时 15 毫秒
81.
Ghrelin, a novel peptide isolated from stomach tissue of rats and humans, has been identified as the endogenous ligand for the growth hormone secretagogue receptor (GHS-R). In addition to its secretion from the stomach, ghrelin is also expressed in the hypothalamic arcuate nucleus, intestine, kidney, placenta, and pancreas. GHS-R mRNA, on the other hand, is expressed in the hypothalamus, pituitary, heart, lung, liver, pancreas, stomach, intestine, and adipose tissue. Ghrelin is considered to have important roles in feeding regulation and energy metabolism as well as in the release of growth hormone (GH). Recent physiological experiments on the pancreas have shown that ghrelin regulates insulin secretion. However, sites of action of ghrelin in the pancreas are yet to be identified. In this study, to gain insight into the role of ghrelin in rat pancreatic islets, we used immunohistochemistry to determine the localization of ghrelin and GHS-R in islet cells. Double fluorescence immunohistochemistry revealed that weak GHS-R-like immunoreactivity was found in B cells containing insulin. GHS-R immunoreactivity overlapped that of glucagon-like immunoreactive cells. Moreover, both ghrelin and GHS-R-like immunoreactivities were detected mostly in the same cells in the periphery of the islets of Langerhans. These observations suggest that ghrelin is synthesized and secreted from A cells, and acts back on A cells in an autocrine and/or paracrine manner. In addition, ghrelin may act on B cells via GHS-R to regulate insulin secretion.  相似文献   
82.
The analysis of expressed sequences from a diverse set of plant species has fueled the increase in understanding of the complex molecular mechanisms underlying plant growth regulation. While representative data sets can be found for the major branches of plant evolution, fern species data are lacking. To further the availability of genetic information in pteridophytes, a normalized cDNA library of Adiantum capillus-veneris was constructed from prothallia grown under white light. A total of 10,420 expressed sequence tags (ESTs) were obtained and clustering of these sequences resulted in 7,100 nonredundant clusters. Of these, 1,608 EST clusters were found to be similar to sequences of known function and 1,092 EST clusters showed similarity to sequences of unknown function. Given the usefulness of Adiantum for developmental studies, the sequence data represented in this report stand to make a significant contribution to the understanding of plant growth regulation, particularly for pteridophytes.  相似文献   
83.

Background

Human β-defensin-4 (hBD-4), a new member of the β-defensin family, was discovered by an analysis of the genomic sequence. The objective of this study was to clarify hBD-4 expression in human lung tissue, along with the inducible expression in response to infectious stimuli, localization, and antimicrobial activities of hBD-4 peptides. We also investigated the participation of hBD-4 in chronic lower respiratory tract infections (LRTI) by measuring the concentrations of hBD-4 peptides in human bronchial epithelial lining fluid (ELF).

Methods

The antimicrobial activity of synthetic hBD-4 peptides against E. coli and P. aeruginosa was measured by radial diffusion and colony count assays. We identified hBD-4 in homogenated human lung tissue by reverse-phase high-performance liquid chromatography coupled with a radioimmunoassay (RIA). Localization of hBD-4 was studied through immunohistochemical analysis (IHC). We investigated the effects of lipopolysaccharide (LPS) on hBD-4 expression and its release from small airway epithelial cells (SAEC). We collected ELF from patients with chronic LRTI using bronchoscopic microsampling to measure hBD-4 concentrations by RIA.

Results

hBD-4 exhibited salt-sensitive antimicrobial activity against P. aeruginosa. We detected the presence of hBD-4 peptides in human lung tissue. IHC demonstrated the localization of hBD-4-producing cells in bronchial and bronchiolar epithelium. The levels of hBD-4 peptides released from LPS-treated SAECs were higher than those of untreated control cells. ELF hBD-4 was detectable in 4 of 6 patients with chronic LRTI, while the amounts in controls were all below the detectable level.

Conclusion

This study suggested that hBD-4 plays a significant role in the innate immunity of the lower respiratory tract.  相似文献   
84.
Bipolar microtubule attachment is central to genome stability. Here, we investigate the mitotic role of the fission yeast EB1 homologue Mal3. Mal3 shows dynamic inward movement along the spindle, initial emergence at the spindle pole body (SPB) and translocation towards the equatorial plane, followed by sudden disappearance. Deletion of Mal3 results in early mitotic delay, which is dependent on the Bub1, but not the Mad2, spindle checkpoint. Consistently, Bub1, but not Mad2, shows prolonged kinetochore localization. Double mutants between mal3 and a subset of checkpoint mutants, including bub1, bub3, mad3 and mph1, but not mad1 or mad2, show massive chromosome mis-segregation defects. In mal3bub1 mutants, both sister centromeres tend to remain in close proximity to one of the separating SPBs. Further analysis indicates that mis-segregated centromeres are exclusively associated with the mother SPB. Mal3, therefore, has a role in preventing monopolar attachment in cooperation with the Bub1/Bub3/Mad3/Mph1-dependent checkpoint.  相似文献   
85.
Among the members of the major facilitator superfamily of Saccharomyces cerevisiae, we identified genes involved in the transport into vacuoles of the basic amino acids histidine, lysine, and arginine. ATP-dependent uptake of histidine and lysine by isolated vacuolar membrane vesicles was impaired in YMR088c, a vacuolar basic amino acid transporter 1 (VBA1)-deleted strain, whereas uptake of tyrosine or calcium was little affected. This defect in histidine and lysine uptake was complemented fully by introducing the VBA1 gene and partially by a gene encoding Vba1p fused with green fluorescent protein, which was determined to localize exclusively to the vacuolar membrane. A defect in the uptake of histidine, lysine, or arginine was also observed in the vacuolar membrane vesicles of mutants YBR293w (VBA2) and YCL069w (VBA3). These three VBA genes are closely related phylogenetically and constitute a new family of basic amino acid transporters in the yeast vacuole.  相似文献   
86.
Fatty acids are common components of biological membranes that are known to play important roles in intracellular signaling. We report here a novel mechanism by which fatty acids regulate the degradation of tyrosinase, a critical enzyme associated with melanin biosynthesis in melanocytes and melanoma cells. Linoleic acid (unsaturated fatty acid, C18:2) accelerated the spontaneous degradation of tyrosinase, whereas palmitic acid (saturated fatty acid, C16:0) retarded the proteolysis. The linoleic acid-induced acceleration of tyrosinase degradation could be abrogated by inhibitors of proteasomes, the multicatalytic proteinase complexes that selectively degrade intracellular ubiquitinated proteins. Linoleic acid increased the ubiquitination of many cellular proteins, whereas palmitic acid decreased such ubiquitination, as compared with untreated controls, when a proteasome inhibitor was used to stabilize ubiquitinated proteins. Immunoprecipitation analysis also revealed that treatment with fatty acids modulated the ubiquitination of tyrosinase, i.e. linoleic acid increased the amount of ubiquitinated tyrosinase whereas, in contrast, palmitic acid decreased it. Furthermore, confocal immunomicroscopy showed that the colocalization of ubiquitin and tyrosinase was facilitated by linoleic acid and diminished by palmitic acid. Taken together, these data support the view that fatty acids regulate the ubiquitination of tyrosinase and are responsible for modulating the proteasomal degradation of tyrosinase. In broader terms, the function of the ubiquitin-proteasome pathway might be regulated physiologically, at least in part, by fatty acids within cellular membranes.  相似文献   
87.
Prolonged activation of metabotropic glutamate receptor 5a (mGluR5a) causes synchronized oscillations in intracellular calcium, inositol 1,4,5-trisphosphate production, and protein kinase C (PKC) activation. Additionally, mGluR5 stimulation elicited cyclical translocations of myristoylated alanine-rich protein kinase C substrate, which were opposite to that of gammaPKC (i.e. from plasma membrane to cytosol) and dependent on PKC activity, indicating that myristoylated alanine-rich protein kinase C substrate is repetitively phosphorylated by oscillating gammaPKC on the plasma membrane. Mutation of mGluR5 Thr(840) to aspartate abolished the oscillation of gammaPKC, but the mutation to alanine (T840A) did not. Cotransfection of gammaPKC with betaIIPKC, another Ca2+-dependent PKC, resulted in synchronous oscillatory translocation of both classical PKCs. In contrast, cotransfection of deltaPKC, a Ca2+-independent PKC, abolished the oscillations of both gammaPKC and inositol 1,4,5-trisphosphate. Regulation of the oscillations was dependent on deltaPKC kinase activity but not on gammaPKC. Furthermore, the T840A-mGluR5-mediated oscillations were not blocked by the deltaPKC overexpression. These results revealed that activation of mGluR5 causes translocation of both gammaPKC and deltaPKC to the plasma membrane. deltaPKC, but not gammaPKC, phosphorylates mGluR5 Thr(840), leading to the blockade of both Ca2+ oscillations and gammaPKC cycling. This subtype-specific targeting proposes the molecular basis of the multiple functions of PKC.  相似文献   
88.
VEGF-KDR/Flk-1 signal utilizes the phospholipase C-gamma-protein kinase C (PKC)-Raf-MEK-ERK pathway as the major signaling pathway to induce gene expression and cPLA2 phosphorylation. However, the spatio-temporal activation of a specific PKC isoform induced by VEGF-KDR signal has not been clarified. We used HEK293T (human embryonic kidney) cells expressing transiently KDR to examine the activation mechanism of PKC. PKC specific inhibitors and human PKCdelta knock-down using siRNA method showed that PKCdelta played an important role in VEGF-KDR-induced ERK activation. Myristoylated alanine-rich C-kinase substrate (MARCKS) translocates from the plasma membrane to the cytoplasm depending upon phosphorylation by PKC. Translocation of MARCKS-GFP induced by VEGF-KDR stimulus was blocked by rottlerin, a PKCdelta specific inhibitor, or human PKCdelta siRNA. VEGF-KDR stimulation did not induce ERK phosphorylation in human PKCdelta-knockdown HEK293T cells, but co-expression of rat PKCdelta-GFP recovered the ERK phosphorylation. Y311/332F mutant of rat PKCdelta-GFP which cannot be activated by tyrosine-phosphorylation but activated by DAG recovered the ERK phosphorylation, while C1B-deletion mutant of rat PKCdelta-GFP, which can be activated by tyrosine-phosphorylation but not by DAG, failed to recover the ERK phosphorylation in human PKCdelta-knockdown HEK293T cell. These results indicate that PKCdelta is involved in VEGF-KDR-induced ERK activation via C1B domain.  相似文献   
89.
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号