首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4492篇
  免费   421篇
  国内免费   1篇
  4914篇
  2023年   34篇
  2022年   58篇
  2021年   90篇
  2020年   55篇
  2019年   89篇
  2018年   98篇
  2017年   80篇
  2016年   158篇
  2015年   223篇
  2014年   280篇
  2013年   281篇
  2012年   399篇
  2011年   364篇
  2010年   235篇
  2009年   197篇
  2008年   251篇
  2007年   237篇
  2006年   231篇
  2005年   249篇
  2004年   231篇
  2003年   226篇
  2002年   192篇
  2001年   32篇
  2000年   31篇
  1999年   44篇
  1998年   64篇
  1997年   41篇
  1996年   40篇
  1995年   41篇
  1994年   30篇
  1993年   28篇
  1992年   40篇
  1991年   23篇
  1990年   22篇
  1989年   12篇
  1988年   22篇
  1987年   21篇
  1986年   9篇
  1985年   14篇
  1984年   20篇
  1983年   12篇
  1982年   13篇
  1981年   11篇
  1980年   5篇
  1979年   13篇
  1978年   4篇
  1977年   4篇
  1976年   4篇
  1974年   7篇
  1970年   7篇
排序方式: 共有4914条查询结果,搜索用时 15 毫秒
91.
Appropriate blood supply and vascular development are necessary in development and in cancer, heart disease, and diabetes. Here, we report the use of DiI-labeled acetylated low-density lipoprotein (DiI-Ac-LDL) to label endothelial cells and characterize the vasculature of live Xenopus embryos. The atlas we have created provides a detailed map of normal vascular development against which perturbations of normal patterning can be compared. By following the development of the intersomitic vessels in real-time, we show that, while rostrocaudal gradient of maturing intersomitic vessels occurs, it is not absolute. In addition, the comparative study of the ontogeny of nerve bundles from the spinal cord of transgenic Xenopus embryos expressing green fluorescent protein in the nervous system and blood vessels demonstrates a strong anatomical correlation in neurovascular development. These studies provide the basis for understanding how the vascular system forms and assumes its complicated stereotypical pattern in normal development and in disease.  相似文献   
92.
Dynamics of bacterial and fungal communities on decaying salt marsh grass   总被引:4,自引:0,他引:4  
Both bacteria and fungi play critical roles in decomposition processes in many natural environments, yet only rarely have they been studied as an integrated microbial community. Here we describe the bacterial and fungal assemblages associated with two decomposition stages of Spartina alterniflora detritus in a productive southeastern U.S. salt marsh. 16S rRNA genes and 18S-to-28S internal transcribed spacer (ITS) regions were used to target the bacterial and ascomycete fungal communities, respectively, based on DNA sequence analysis of isolates and environmental clones and by using community fingerprinting based on terminal restriction fragment length polymorphism (T-RFLP) analysis. Seven major bacterial taxa (six affiliated with the alpha-Proteobacteria and one with the Cytophagales) and four major fungal taxa were identified over five sample dates spanning 13 months. Fungal terminal restriction fragments (T-RFs) were informative at the species level; however, bacterial T-RFs frequently comprised a number of related genera. Amplicon abundances indicated that the salt marsh saprophyte communities have little-to-moderate variability spatially or with decomposition stage, but considerable variability temporally. However, the temporal variability could not be readily explained by either successional shifts or simple relationships with environmental factors. Significant correlations in abundance (both positive and negative) were found among dominant fungal and bacterial taxa that possibly indicate ecological interactions between decomposer organisms. Most associations involved one of four microbial taxa: two groups of bacteria affiliated with the alpha-Proteobacteria and two ascomycete fungi (Phaeosphaeria spartinicola and environmental isolate "4clt").  相似文献   
93.
In response to ionizing radiation (IR), the tumor suppressor p53 is stabilized and promotes either cell cycle arrest or apoptosis. Chk2 activated by IR contributes to this stabilization, possibly by direct phosphorylation. Like p53, Chk2 is mutated in patients with Li-Fraumeni syndrome. Since the ataxia telangiectasia mutated (ATM) gene is required for IR-induced activation of Chk2, it has been assumed that ATM and Chk2 act in a linear pathway leading to p53 activation. To clarify the role of Chk2 in tumorigenesis, we generated gene-targeted Chk2-deficient mice. Unlike ATM(-/-) and p53(-/-) mice, Chk2(-/-) mice do not spontaneously develop tumors, although Chk2 does suppress 7,12-dimethylbenzanthracene-induced skin tumors. Tissues from Chk2(-/-) mice, including those from the thymus, central nervous system, fibroblasts, epidermis, and hair follicles, show significant defects in IR-induced apoptosis or impaired G(1)/S arrest. Quantitative comparison of the G(1)/S checkpoint, apoptosis, and expression of p53 proteins in Chk2(-/-) versus ATM(-/-) thymocytes suggested that Chk2 can regulate p53-dependent apoptosis in an ATM-independent manner. IR-induced apoptosis was restored in Chk2(-/-) thymocytes by reintroduction of the wild-type Chk2 gene but not by a Chk2 gene in which the sites phosphorylated by ATM and ataxia telangiectasia and rad3(+) related (ATR) were mutated to alanine. ATR may thus selectively contribute to p53-mediated apoptosis. These data indicate that distinct pathways regulate the activation of p53 leading to cell cycle arrest or apoptosis.  相似文献   
94.
IL-10 is a potent immunoregulatory cytokine attenuating a wide range of immune effector and inflammatory responses. In the present study, we assess whether endogenous levels of IL-10 function to regulate the incidence and severity of collagen-induced arthritis. DBA/1 wildtype (WT), heterozygous (IL-10+/-) and homozygous (IL-10-/-) IL-10-deficient mice were immunized with type II collagen. Development of arthritis was monitored over time, and collagen-specific cytokine production and anticollagen antibodies were assessed. Arthritis developed progressively in mice immunized with collagen, and 100% of the WT, IL-10+/-, and IL-10-/- mice were arthritic at 35 days. However, the severity of arthritis in the IL-10-/- mice was significantly greater than that in WT or IL-1+/- animals. Disease severity was associated with reduced IFN-γ levels and a dramatic increase in CD11b-positive macrophages. Paradoxically, both the IgG1 and IgG2a anticollagen antibody responses were also significantly reduced. These data demonstrate that IL-10 is capable of controlling disease severity through a mechanism that involves IFN-γ. Since IL-10 levels are elevated in rheumatoid arthritis synovial fluid, these findings may have relevance to rheumatoid arthritis.  相似文献   
95.
Renewable energy and greenhouse gas (GHG) reduction targets are driving an acceleration in the use of bioenergy resources. The environmental impact of national and regional development plans must be assessed in compliance with the EU Strategic Environmental Assessment (SEA) Directive (2001/42/EC). Here, we quantify the environmental impact of an Irish Government bioenergy plan to replace 30% of peat used in three peat‐burning power stations, located within the midlands region, with biomass. Four plan alternatives for supplying biomass to the power plant were considered in this study: (1) importation of palm kernel shell from south‐east Asia, (2) importation of olive cake pellets from Spain and (3) growing either willow or (4) Miscanthus in the vicinity of the power stations. The impact of each alternative on each of the environmental receptors proposed in the SEA Directive was first quantified before the data were normalized on either an Irish, regional or global scale. Positive environmental impacts were very small compared to the negative environmental impacts for each of the plan alternatives considered. Comparison of normalized indicator values confirmed that the adverse environmental consequences of each plan alternative are concentrated at the location where the biomass is produced. The analysis showed that the adverse environmental consequences of biomass importation are substantially greater than those associated with the use of willow and Miscanthus grown on former grassland. The use of olive cake pellets had a greater adverse environmental effect compared to the use of peat whereas replacement of peat with either willow or Miscanthus feedstocks led to a substantial reduction in environmental pressure. The proposed assessment framework combines the scope of SEA with the quantitative benefits of life cycle assessment and can be used to evaluate the environmental consequences of bioenergy plans.  相似文献   
96.
97.
Apoptosis is essential for clearance of potentially injurious inflammatory cells and subsequent efficient resolution of inflammation. Here we report that human neutrophils contain functionally active cyclin-dependent kinases (CDKs), and that structurally diverse CDK inhibitors induce caspase-dependent apoptosis and override powerful anti-apoptosis signals from survival factors such as granulocyte-macrophage colony-stimulating factor (GM-CSF). We show that the CDK inhibitor R-roscovitine (Seliciclib or CYC202) markedly enhances resolution of established neutrophil-dependent inflammation in carrageenan-elicited acute pleurisy, bleomycin-induced lung injury, and passively induced arthritis in mice. In the pleurisy model, the caspase inhibitor zVAD-fmk prevents R-roscovitine-enhanced resolution of inflammation, indicating that this CDK inhibitor augments inflammatory cell apoptosis. We also provide evidence that R-roscovitine promotes apoptosis by reducing concentrations of the anti-apoptotic protein Mcl-1. Thus, CDK inhibitors enhance the resolution of established inflammation by promoting apoptosis of inflammatory cells, thereby demonstrating a hitherto unrecognized potential for the treatment of inflammatory disorders.  相似文献   
98.
Recent structural studies of the HMG-CoA synthase members of the thiolase superfamily have shown that the catalytic loop containing the nucleophilic cysteine follows the phi and psi angle pattern of a II' beta turn. However, the i + 1 residue is conserved as an alanine, which is quite unusual in this position as it must adopt a strained positive phi angle to accommodate the geometry of the turn. To assess the effect of the conserved strain in the catalytic loop, alanine 110 of Enterococcus faecalis 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) synthase was mutated to a glycine. Subsequent enzymatic studies showed that the overall reaction rate of the enzyme was increased 140-fold. An X-ray crystallographic study of the Ala110Gly mutant enzyme demonstrated unanticipated adjustments in the active site that resulted in additional stabilization of all three steps of the reaction pathway. The rates of acetylation and hydrolysis of the mutant enzyme increased because the amide nitrogen of Ser308 shifts 0.4 A toward the catalytic cysteine residue. This motion positions the nitrogen to better stabilize the intermediate negative charge that develops on the carbonyl oxygen of the acetyl group during both the formation of the acyl-enzyme intermediate and its hydrolysis. In addition, the hydroxyl of Ser308 rotates 120 degrees to a position where it is able to stabilize the carbanion intermediate formed by the methyl group of the acetyl-S-enzyme during its condensation with acetoacetyl-CoA.  相似文献   
99.
Studies of biodiversity–ecosystem function in treed ecosystems have generally focused on aboveground functions. This study investigates intertrophic links between tree diversity and soil microbial community function and composition. We examined how microbial communities in surface mineral soil responded to experimental gradients of tree species richness (SR ), functional diversity (FD ), community‐weighted mean trait value (CWM ), and tree identity. The site was a 4‐year‐old common garden experiment near Montreal, Canada, consisting of deciduous and evergreen tree species mixtures. Microbial community composition, community‐level physiological profiles, and respiration were evaluated using phospholipid fatty acid (PLFA ) analysis and the MicroResp? system, respectively. The relationship between tree species richness and glucose‐induced respiration (GIR ), basal respiration (BR ), metabolic quotient (qCO 2) followed a positive but saturating shape. Microbial communities associated with species mixtures were more active (basal respiration [BR ]), with higher biomass (glucose‐induced respiration [GIR ]), and used a greater number of carbon sources than monocultures. Communities associated with deciduous tree species used a greater number of carbon sources than those associated with evergreen species, suggesting a greater soil carbon storage capacity. There were no differences in microbial composition (PLFA ) between monocultures and SR mixtures. The FD and the CWM of several functional traits affected both BR and GIR . In general, the CWM of traits had stronger effects than did FD , suggesting that certain traits of dominant species have more effect on ecosystem processes than does FD . Both the functions of GIR and BR were positively related to aboveground tree community productivity. Both tree diversity (SR ) and identity (species and functional identity—leaf habit) affected soil microbial community respiration, biomass, and composition. For the first time, we identified functional traits related to life‐history strategy, as well as root traits that influence another trophic level, soil microbial community function, via effects on BR and GIR .  相似文献   
100.
HIV can evolve remarkably quickly in response to antiretroviral therapies and the immune system. This evolution stymies treatment effectiveness and prevents the development of an HIV vaccine. Consequently, there has been a great interest in using population genetics to disentangle the forces that govern the HIV adaptive landscape (selection, drift, mutation, and recombination). Traditional population genetics approaches look at the current state of genetic variation and infer the processes that can generate it. However, because HIV evolves rapidly, we can also sample populations repeatedly over time and watch evolution in action. In this paper, we demonstrate how time series data can bound evolutionary parameters in a way that complements and informs traditional population genetic approaches. Specifically, we focus on our recent paper (Feder et al., 2016, eLife), in which we show that, as improved HIV drugs have led to fewer patients failing therapy due to resistance evolution, less genetic diversity has been maintained following the fixation of drug resistance mutations. Because soft sweeps of multiple drug resistance mutations spreading simultaneously have been previously documented in response to the less effective HIV therapies used early in the epidemic, we interpret the maintenance of post-sweep diversity in response to poor therapies as further evidence of soft sweeps and therefore a high population mutation rate (θ) in these intra-patient HIV populations. Because improved drugs resulted in rarer resistance evolution accompanied by lower post-sweep diversity, we suggest that both observations can be explained by decreased population mutation rates and a resultant transition to hard selective sweeps. A recent paper (Harris et al., 2018, PLOS Genetics) proposed an alternative interpretation: Diversity maintenance following drug resistance evolution in response to poor therapies may have been driven by recombination during slow, hard selective sweeps of single mutations. Then, if better drugs have led to faster hard selective sweeps of resistance, recombination will have less time to rescue diversity during the sweep, recapitulating the decrease in post-sweep diversity as drugs have improved. In this paper, we use time series data to show that drug resistance evolution during ineffective treatment is very fast, providing new evidence that soft sweeps drove early HIV treatment failure.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号