首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   699篇
  免费   115篇
  814篇
  2023年   16篇
  2022年   16篇
  2021年   14篇
  2020年   23篇
  2019年   54篇
  2018年   46篇
  2017年   29篇
  2016年   30篇
  2015年   29篇
  2014年   41篇
  2013年   76篇
  2012年   42篇
  2011年   47篇
  2010年   29篇
  2009年   22篇
  2008年   23篇
  2007年   21篇
  2006年   30篇
  2005年   19篇
  2004年   14篇
  2003年   14篇
  2002年   22篇
  2001年   10篇
  2000年   8篇
  1999年   11篇
  1998年   8篇
  1997年   7篇
  1996年   13篇
  1995年   7篇
  1994年   7篇
  1993年   7篇
  1992年   8篇
  1989年   5篇
  1988年   6篇
  1987年   2篇
  1986年   4篇
  1985年   2篇
  1984年   2篇
  1982年   2篇
  1977年   2篇
  1976年   2篇
  1968年   3篇
  1961年   4篇
  1958年   2篇
  1955年   2篇
  1935年   2篇
  1877年   2篇
  1872年   2篇
  1870年   3篇
  1869年   2篇
排序方式: 共有814条查询结果,搜索用时 15 毫秒
61.
The protolytic reactions of PSII membrane fragments were analyzed by measurements of absorption changes of the water soluble indicator dye bromocresol purple induced by a train of 10 s flashes in dark-adapted samples. It was found that: a) in the first flash a rapid H+-release takes place followed by a slower H+-uptake. The deprotonation is insensitive to DCMU but is completely eliminated by linolenic acid treatment of the samples; b) the extent of the H+-uptake in the first flash depends on the redox potential of the suspension. In this time domain no H+-uptake is observed in the subsequent flashes; c) the extent of the H+-release as a function of the flash number in the sequence exhibits a characteristic oscillation pattern. Multiphasic release kinetics are observed. The oscillation pattern can be satisfactorily described by a 1, 0, 1, 2 stoichiometry for the redox transitions Si Si+1 (i=0, 1, 2, 3) in the water oxidizing enzyme system Y. The H+-uptake after the first flash is assumed to be a consequence of the very fast reduction of oxidized Q400(Fe3+) formed due to dark incubation with K3[Fe(CN)6]. The possible participation of component Z in the deprotonation reactions at the PSII donor side is discussed.Abbreviations A protonizable group at the PSII acceptor side - BCP Bromocresol Purple - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - FWHM Full Width at Half Maximum - QA, QB primary and secondary plastoquinone at PSII acceptor side - Q400 redox group at PSII-acceptor side (high spin Fe2+) - P680 Photoactive chlorophyll of PSII reaction center - Si redox states of the catalytic site of water oxidation - Z redox component connecting the catalytic site of water oxidation with the reaction center  相似文献   
62.
An in vitro hair perforation test is used to differentiate isolates of Trichophyton mentagrophytes and Trichophyton rubrum complexes because morphological criteria are insufficient. Here, we performed in vitro hair perforation tests using blond prepubertal hair and albino adult hair to determine whether they differentiate between fungal species. We tested 43 well-characterized dermatophyte strains, Arthroderma spp. [n = 4], Epidermophyton floccosum [n = 1], Microsporum spp. [n = 8], and Trichophyton spp. [n = 30], and examined hair perforation at 3–30 days postinoculation (p.i.). The perforation times were not significantly different between the two hair types (P > 0.05). The T. mentagrophytes complex strains perforated hair 4–5 days p.i., whereas T. rubrum complex strains perforated hair 13–30 days p.i., except for Trichophyton violaceum, which perforated hair after 6–7 days. Thus, the hair perforation test is highly sensitive (100 %) and specific (100 %) for differentiating T. mentagrophytes from T. rubrum complexes 5 days p.i. At 14 and 30 days, the sensitivity and negative predictive value of the test remained unchanged (100 %), but the specificity was reduced (64.3 and 14.3 %, respectively). Consistent with previous reports, we observed “perforating organs” of zoophilic Microsporum canis and geophilic Microsporum gypseum at 4 and 3 days, respectively. This paper offers a “low-cost” and “low-tech” alternative to differentiating dermatophyte species where standard morphological techniques fail and/or where molecular techniques are not a viable option.  相似文献   
63.
Spinal muscular atrophy (SMA) is a heterogeneous group of neuromuscular disorders caused by degeneration of lower motor neurons. Although functional loss of SMN1 is associated with autosomal-recessive childhood SMA, the genetic cause for most families affected by dominantly inherited SMA is unknown. Here, we identified pathogenic variants in bicaudal D homolog 2 (Drosophila) (BICD2) in three families afflicted with autosomal-dominant SMA. Affected individuals displayed congenital slowly progressive muscle weakness mainly of the lower limbs and congenital contractures. In a large Dutch family, linkage analysis identified a 9q22.3 locus in which exome sequencing uncovered c.320C>T (p.Ser107Leu) in BICD2. Sequencing of 23 additional families affected by dominant SMA led to the identification of pathogenic variants in one family from Canada (c.2108C>T [p.Thr703Met]) and one from the Netherlands (c.563A>C [p.Asn188Thr]). BICD2 is a golgin and motor-adaptor protein involved in Golgi dynamics and vesicular and mRNA transport. Transient transfection of HeLa cells with all three mutant BICD2 cDNAs caused massive Golgi fragmentation. This observation was even more prominent in primary fibroblasts from an individual harboring c.2108C>T (p.Thr703Met) (affecting the C-terminal coiled-coil domain) and slightly less evident in individuals with c.563A>C (p.Asn188Thr) (affecting the N-terminal coiled-coil domain). Furthermore, BICD2 levels were reduced in affected individuals and trapped within the fragmented Golgi. Previous studies have shown that Drosophila mutant BicD causes reduced larvae locomotion by impaired clathrin-mediated synaptic endocytosis in neuromuscular junctions. These data emphasize the relevance of BICD2 in synaptic-vesicle recycling and support the conclusion that BICD2 mutations cause congenital slowly progressive dominant SMA.  相似文献   
64.
For the investigation of the NADPH-dependent Baeyer-Villiger monooxygenase MekA from Pseudomonas veronii MEK700, the encoding gene mekA with a C-terminal strep-tag was cloned and expressed under the control of a l-rhamnose inducible promoter from Escherichia coli. The mekA gene was found by analyzing the methylethylketone (MEK) degradation pathway by Onaca et al. J Bacteriol 189:3759–3767, 2007. Sequence analysis of the corresponding protein, which catalyzes the Baeyer-Villiger oxidation of MEK to ethyl acetate, showed two binding sites (Rossman-fold motifs) for cofactors NAD(P)H and FAD. Although expression of mekA resulted in large amounts of inclusion bodies compared to soluble protein, high amounts of purified and active MekA were obtained by affinity chromatography. The substrate spectrum of MekA was investigated with purified enzyme and whole cells using a variety of aliphatic, aromatic, and cyclic ketones including four chiral substrates. The specific activity of MekA with MEK as substrate was determined to be 1.1 U/mg protein. K M values were determined for MEK and the cofactors NADPH and NADH to be 6, 11, and 29 μM, respectively.  相似文献   
65.
We performed a genome-wide QTL scan for production traits in a line cross between Duroc and Pietrain breeds of pigs, which included 585 F(2) progeny produced from 31 full-sib families genotyped with 106 informative microsatellites. A linkage map covering all 18 autosomes and spanning 1987 Kosambi cM was constructed. Thirty-five phenotypic traits including body weight, growth, carcass composition and meat quality traits were analysed using least square regression interval mapping. Twenty-four QTL exceeded the genome-wide significance threshold, while 47 QTL reached the suggestive threshold. These QTL were located at 28 genomic regions on 16 autosomal chromosomes and QTL in 11 regions were significant at the genome-wide level. A QTL affecting pH value in loin was detected on SSC1 between marker-interval S0312-S0113 with strong statistical support (P < 3.0 x 10(-14)); this QTL was also associated with meat colour and conductivity. QTL for carcass composition and average daily gain was also found on SSC1, suggesting multiple QTL. Seventeen genomic segments had only a single QTL that reached at least suggestive significance. Forty QTL exhibited additive inheritance whereas 31 QTL showed (over-) dominance effects. Two QTL for trait backfat thickness were detected on SSC2; a significant paternal effect was found for a QTL in the IGF2 region while another QTL in the middle of SSC2 showed Mendelian expression.  相似文献   
66.
The pathway of the oxidation of propionate to pyruvate in Escherichia coli involves five enzymes, only two of which, methylcitrate synthase and 2-methylisocitrate lyase, have been thoroughly characterized. Here we report that the isomerization of (2S,3S)-methylcitrate to (2R,3S)-2-methylisocitrate requires a novel enzyme, methylcitrate dehydratase (PrpD), and the well-known enzyme, aconitase (AcnB), of the tricarboxylic acid cycle. AcnB was purified as 2-methylaconitate hydratase from E. coli cells grown on propionate and identified by its N-terminus. The enzyme has an apparent Km of 210 micro m for (2R,3S)-2-methylisocitrate but shows no activity with (2S,3S)-methylcitrate. On the other hand, PrpD is specific for (2S,3S)-methylcitrate (Km = 440 micro m) and catalyses in addition only the hydration of cis-aconitate at a rate that is five times lower. The product of the dehydration of enzymatically synthesized (2S,3S)-methylcitrate was designated cis-2-methylaconitate because of its ability to form a cyclic anhydride at low pH. Hence, PrpD catalyses an unusual syn elimination, whereas the addition of water to cis-2-methylaconitate occurs in the usual anti manner. The different stereochemistries of the elimination and addition of water may be the reason for the requirement for the novel methylcitrate dehydratase (PrpD), the sequence of which seems not to be related to any other enzyme of known function. Northern-blot experiments showed expression of acnB under all conditions tested, whereas the RNA of enzymes of the prp operon (PrpE, a propionyl-CoA synthetase, and PrpD) was exclusively present during growth on propionate. 2D gel electrophoresis showed the production of all proteins encoded by the prp operon during growth on propionate as sole carbon and energy source, except PrpE, which seems to be replaced by acetyl-CoA synthetase. This is in good agreement with investigations on Salmonella enterica LT2, in which disruption of the prpE gene showed no visible phenotype.  相似文献   
67.
Extracellular proteases produced by Scytalidium thermophilum, grown on microcrystalline cellulose, were most active at pH 6.5–8 and 37–45 °C when incubated for 60 min. Highest protease activity was at day 3 where endoglucanase activity was low. Protease activity measurements with and without the protease inhibitors, p-chloromercuribenzoate, PMSF, antipain, E-64, EDTA and pepstatin A, suggest production of thiol-containing serine protease and serine proteases. Endoglucanase and Avicel-adsorbable endoglucanase activity in culture medium was not significantly affected by protease inhibitors.  相似文献   
68.
The phytopathogenic basidiomycete Ustilago maydis displays a dimorphic switch between budding growth of haploid cells and filamentous growth of the dikaryon. In a screen for mutants affected in morphogenesis and cytokinesis, we identified the serine/threonine protein kinase Cla4, a member of the family of p21-activated kinases (PAKs). Cells, in which cla4 has been deleted, are viable but they are unable to bud properly. Instead, cla4 mutant cells grow as branched septate hyphae and divide by contraction and fission at septal cross walls. Delocalized deposition of chitinous cell wall material along the cell surface is observed in cla4 mutant cells. Deletion of the Cdc42/Rac1 interaction domain (CRIB) results in a constitutive active Cla4 kinase, whose expression is lethal for the cell. cla4 mutant cells are unable to induce pathogenic development in plants and to display filamentous growth in a mating reaction, although they are still able to secrete pheromone and to undergo cell fusion with wild-type cells. We propose that Cla4 is involved in the regulation of cell polarity during budding and filamentation.  相似文献   
69.
The Genotoxic Effect of the New Acaricide Etoxazole   总被引:2,自引:1,他引:1  
Etoxazole is a member of the diphenyl oxazoline class of insecticide, which was newly developed for use on pome fruits, cotton and strawberries as an acaricide. In the present study, genotoxic effects of acaricide etoxazole (ETX) (miticide/ovicide) were investigated using chromosome aberration (CA) test, sister chromatid exchange (SCE) test, and micronucleus test in human lymphocytes. ETX induced the CAs at all concentrations (5, 10, and 20 g/ml) for 24 h and also induced the CA at the highest concentration (20 g/ml) for 48 h only. The inducing the CAs for 48 h treatment period was dose-dependent. In addition, it induced the SCE at all concentrations and treatment periods in a dose-dependent manner as well. Although ETX decreased the mitotic index (MI) at all concentrations and treatment periods dose-dependently, it did not decrease the replication index (RI) when compared to the negative and solvent controls. In addition, ETX induced the micronucleus at all concentrations except 5 g/ml for 48 h. This inducing was dose-dependent as well. It can be concluded that ETX has a potential genotoxic effects in cultured human peripheral lymphocytes.  相似文献   
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号