首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   271篇
  免费   12篇
  283篇
  2024年   1篇
  2023年   13篇
  2022年   11篇
  2021年   12篇
  2020年   12篇
  2019年   6篇
  2018年   12篇
  2017年   12篇
  2016年   19篇
  2015年   13篇
  2014年   16篇
  2013年   61篇
  2012年   14篇
  2011年   16篇
  2010年   14篇
  2009年   10篇
  2008年   10篇
  2007年   6篇
  2006年   7篇
  2005年   1篇
  2004年   5篇
  2003年   5篇
  2002年   1篇
  2001年   2篇
  2000年   2篇
  1999年   1篇
  1995年   1篇
排序方式: 共有283条查询结果,搜索用时 15 毫秒
101.
Journal of Plant Biochemistry and Biotechnology - Wheat is the second important cereal crop worldwide due to nutritional composition and role in meeting daily energy needs. Salinity is an abiotic...  相似文献   
102.
Venlafaxine is an approved antidepressant that is an inhibitor of both serotonin and norepinephrine transporters. Medical treatment with oral venlafaxine can be beneficial to depression due to reducing free radical production in the brain and medulla of depression- induced rats because oxidative stress may a play role in some depression. We investigated the effect of venlafaxine administration and experimental depression on lipid peroxidation and antioxidant levels in cortex brain, medulla and erythrocytes of rats. Thirty male wistar rats were used and were randomly divided into three groups. Venlafaxine (20 mg/kg) was orally supplemented to depression-induced rats constituting the first group for four week. Second group was depression-induced group although third group was used as control. Depressions in the first and second groups were induced on day zero of the study by chronic mild stress. Brain, medulla and erythrocytes samples were taken from all animals on day 28. Depression resulted in significant decrease in the glutathione peroxidase (GSH-Px) activity and vitamin C concentrations of cortex brain, glutathione (GSH) value of medulla although their levels were increased by venlafaxine administration to the animals of depression group. The lipid peroxidation levels in the three tissues and nitric oxide value in cortex brain elevated although their levels were decreased by venlafaxine administration. There were no significant changes in cortex brain vitamin A, erythrocytes vitamin C, GSH-Px and GSH, medulla vitamin A, GSH and GSH-Px values. In conclusion, cortex brain within the three tissues was most affected by oxidative stress although there was the beneficial effect of venlafaxine in the brain of depression-induced rats on investigated antioxidant defenses in the rat model. The treatment of depression by venlafaxine may also play a role in preventing oxidative stress. Abstract of the paper was submitted in 1st Ion Channels and Oxidative Stress Congress, 14–16 September 2006, Isparta, Turkey.  相似文献   
103.
In Vitro Cellular & Developmental Biology - Plant - Gentiana species belonging to the Gentianaceae family are medicinal plants rich in glycosides and phenolics. Gentiana lutea L. is a highly...  相似文献   
104.
Reactive oxygen species can bind protein, DNA, lipids, and carbohydrates and thus cause an oxidation reaction that induces various syndromes such as cardiovascular diseases, degenerative disease, and cancer types in the human body. Bioactive compounds, such as PUFA, EPA, DHA, and carotenoids in algae, have a chain ring and protect the tissue from chemical damage and reverse the symptoms of some diseases. Algal bioactives also have various biological properties such as anticoagulants, antiviral, antiangiogenic, antitumor, anti-inflammatory, antioxidant, antiproliferative, and immune modulation properties. This study aimed to show in vitro cytotoxic activity effect of Chlorella protothecoides and Nannochloropsis oculata microalgal extracts loaded nano–microparticles on A-172 (Homo sapiens brain glioblastoma) and HCT-116 (H. sapiens colon colorectal carcinoma) cell lines because of the increasing importance of algal biotechnology. MTT viability tests were performed on HUVEC, A172, and HCT 116 cells with particles obtained at optimum process parameters. The cell viability rates of encapsulated particles were also compared with pure algae extracts. Microalgal extracts loaded nano–micro particles showed very promising results for cytotoxic effect on cancer cells.  相似文献   
105.

Aim

The objective of this study was to examine whether MT plays a protective role against the damage in the liver by administering carbontetrachloride (CCl4) to rats.

Main method

28 male Wistar albino (n = 28, 8 weeks old) rats have been used in the study. The rats were distributed into 4 groups according to their live weights. The groups were: (i) negative control (NC): normal water consuming group to which no CCl4 and milk thistle (MT) is administered; (ii) positive control (PC): normal water consuming group to which no CCl4 is administered but MT is administered; (iii) CCl4 group: normal water consuming and group to which CCl4 is administered (2 ml/kg live weight, ip); and (iv) CCl4 + MT group: CCl4 and MT administered group (2 ml/kg live weight, ip). Caspase-3, caspase-9, bax, and bcl-2 protein syntheses were examined via western blotting. MDA determination in liver tissue was made using spectrophotometer.

Key findings

MDA amount has decreased in the CCl4 + MT group in comparison to CCl4 group whereas caspase-3 and caspase-9 has increased and bax and bcl-2 has decreased.

Significance

These results show that MT protects the liver against oxidative damage.  相似文献   
106.
This study aims to research the effect of streptozotocin (STZ) at different doses on the serum micronutrients and oxidative stress status in diabetic rat models. Twenty male rats averaged 250 g and 3–4 months old were used as experimental models. They were put in four groups composed of five rats each. Diabetic was induced by administering STZ 55 and 65 mg/kg intraperitonally. The serum micronutrients including minerals and vitamins (Cu, Zn, Mg, Fe, vitamins D, E, and C) and oxidative stress (malondialdehyde, MDA) were determined. Cu, Zn, and Vitamin D3 levels were found to increase significantly in STZ groups (p < 0.005). Retinol levels decreased significantly in STZ groups (p < 0.005). In the groups administered 55 mg/kg STZ ferrum and vitamin C levels were found significantly lower than the other groups (p < 0.005). In the group given 65 mg/kg STZ α-tocopherol levels were highest (p < 0.005) among other groups. There was not any difference between the groups for MDA, Cu/Zn, and Mg. For both doses, oxidative stress status was not significantly affected within 48 h of the application, however, some micronutritents were affected significantly.  相似文献   
107.

Background

Insulin-degrading enzyme (IDE) is an allosteric Zn+2 metalloprotease involved in the degradation of many peptides including amyloid-β, and insulin that play key roles in Alzheimer''s disease (AD) and type 2 diabetes mellitus (T2DM), respectively. Therefore, the use of therapeutic agents that regulate the activity of IDE would be a viable approach towards generating pharmaceutical treatments for these diseases. Crystal structure of IDE revealed that N-terminal has an exosite which is ∼30 Å away from the catalytic region and serves as a regulation site by orientation of the substrates of IDE to the catalytic site. It is possible to find small molecules that bind to the exosite of IDE and enhance its proteolytic activity towards different substrates.

Methodology/Principal Findings

In this study, we applied structure based drug design method combined with experimental methods to discover four novel molecules that enhance the activity of human IDE. The novel compounds, designated as D3, D4, D6, and D10 enhanced IDE mediated proteolysis of substrate V, insulin and amyloid-β, while enhanced degradation profiles were obtained towards substrate V and insulin in the presence of D10 only.

Conclusion/Significance

This paper describes the first examples of a computer-aided discovery of IDE regulators, showing that in vitro and in vivo activation of this important enzyme with small molecules is possible.  相似文献   
108.
The rhizospheres of five different potato cultivars (including a genetically modified cultivar) obtained from a loamy sand soil and two from a sandy peat soil, next to corresponding bulk soils, were studied with respect to their community structures and potential function. For the former analyses, we performed bacterial 16S ribosomal RNA gene-based PCR denaturing gradient gel electrophoresis (PCR-DGGE) on the basis of soil DNA; for the latter, we extracted microbial communities and subjected these to analyses in phenotype arrays (PM1, PM2, and PM4, Biolog), with a focus on the use of different carbon, sulfur and phosphorus sources. In addition, we performed bacterial PCR-DGGE on selected wells to assess the structures of these substrate-responsive communities. Effects of soil type, the rhizosphere, and cultivar on the microbial community structures were clearly observed. Soil type was the most determinative parameter shaping the functional communities, whereas the rhizosphere and cultivar type also exerted an influence. However, no genetically modified plant effect was observed. The effects were imminent based on general community analysis and also single-compound analysis. Utilization of some of the carbon and sulfur sources was specific per cultivar, and different microbial communities were found as defined by cultivar. Thus, both soil and cultivar type shaped the potato root-associated bacterial communities that were responsive to some of the substrates in phenotype arrays.  相似文献   
109.
Chitosan-based carriers have important potential applications for the administration of drugs. In the present study, topical gel formulations of terbinafine hydrochloride (T-HCl) were prepared using different types of chitosan at different molecular weight, and the antifungal inhibitory activity was evaluated to suggest an effective formulation for the treatment of fungal infections. The characteristics of gel formulations were determined with viscosity measurements and texture profile analysis. Stability studies were performed at different temperatures during 3 months. The ex vivo permeation properties were studied through rat skin by using Franz diffusion cells. The antifungal inhibitory activity of formulations on Candida species and filamentous fungi was also examined with agar-cup method. The microbiological assay was found suitable for determination of in vitro antifungal activity of T-HCl. A marketed product was used to compare the results. The antifungal activity of T-HCl significantly increased when it was introduced into the chitosan gels. A higher drug release and the highest zone of inhibition were obtained from gels prepared with the lowest molecular weight chitosan (Protasan UP CL 213) compared to that of other chitosan gels and marketed product. These results indicated the advantages of the suggested formulations for topical antifungal therapy against Candida species and filamentous fungi.  相似文献   
110.
The synthesis of novel tetrazole/sulfonamide derivatives based on octahydroacridine, xanthene and chromene scaffold by using microwave (MW) assisted techniques is reported in this study. These synthesized hybrid compounds were assayed for the inhibition of carbonic anhydrase (CA, EC 4.2.1.1). The inhibitory activities were determined against three cytosolic human isoforms (hCA I, II and VII) and one membrane-associated (hCA IV) isoform. Some of the newly synthesized sulfonamides showed micromolar to nanomolar inhibitory activity against these enzymes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号