首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5806篇
  免费   480篇
  国内免费   3篇
  2023年   20篇
  2022年   56篇
  2021年   131篇
  2020年   64篇
  2019年   97篇
  2018年   142篇
  2017年   107篇
  2016年   142篇
  2015年   279篇
  2014年   303篇
  2013年   418篇
  2012年   527篇
  2011年   533篇
  2010年   443篇
  2009年   328篇
  2008年   385篇
  2007年   314篇
  2006年   317篇
  2005年   284篇
  2004年   249篇
  2003年   240篇
  2002年   236篇
  2001年   61篇
  2000年   36篇
  1999年   53篇
  1998年   55篇
  1997年   44篇
  1996年   27篇
  1995年   33篇
  1994年   28篇
  1993年   17篇
  1992年   24篇
  1991年   24篇
  1990年   26篇
  1989年   13篇
  1988年   20篇
  1987年   22篇
  1986年   12篇
  1985年   17篇
  1984年   19篇
  1983年   12篇
  1982年   11篇
  1981年   6篇
  1980年   8篇
  1979年   10篇
  1978年   9篇
  1975年   6篇
  1974年   8篇
  1972年   10篇
  1971年   9篇
排序方式: 共有6289条查询结果,搜索用时 31 毫秒
991.
Microbial transglutaminase (MTG) is a practical tool to enzymatically form isopeptide bonds between peptide or protein substrates. This natural approach to crosslinking the side‐chains of reactive glutamine and lysine residues is solidly rooted in food and textile processing. More recently, MTG's tolerance for various primary amines in lieu of lysine have revealed its potential for site‐specific protein labeling with aminated compounds, including fluorophores. Importantly, MTG can label glutamines at accessible positions in the body of a target protein, setting it apart from most labeling enzymes that react exclusively at protein termini. To expand its applicability as a labeling tool, we engineered the B1 domain of Protein G (GB1) to probe the selectivity and enhance the reactivity of MTG toward its glutamine substrate. We built a GB1 library where each variant contained a single glutamine at positions covering all secondary structure elements. The most reactive and selective variants displayed a >100‐fold increase in incorporation of a recently developed aminated benzo[a]imidazo[2,1,5‐cd]indolizine‐type fluorophore, relative to native GB1. None of the variants were destabilized. Our results demonstrate that MTG can react readily with glutamines in α‐helical, β‐sheet, and unstructured loop elements and does not favor one type of secondary structure. Introducing point mutations within MTG's active site further increased reactivity toward the most reactive substrate variant, I6Q‐GB1, enhancing MTG's capacity to fluorescently label an engineered, highly reactive glutamine substrate. This work demonstrates that MTG‐reactive glutamines can be readily introduced into a protein domain for fluorescent labeling.  相似文献   
992.
The genetic structure of bacterial populations can be related to geographical locations of isolation. In some species, there is a strong correlation between geographical distance and genetic distance, which can be caused by different evolutionary mechanisms. Patterns of ancient admixture in Helicobacter pylori can be reconstructed in concordance with past human migration, whereas in Mycobacterium tuberculosis it is the lack of recombination that causes allopatric clusters. In Campylobacter, analyses of genomic data and molecular typing have been successful in determining the reservoir host species, but not geographical origin. We investigated biogeographical variation in highly recombining genes to determine the extent of clustering between genomes from geographically distinct Campylobacter populations. Whole‐genome sequences from 294 Campylobacter isolates from North America and the UK were analysed. Isolates from within the same country shared more recently recombined DNA than isolates from different countries. Using 15 UK/American closely matched pairs of isolates that shared ancestors, we identify regions that have frequently and recently recombined to test their correlation with geographical origin. The seven genes that demonstrated the greatest clustering by geography were used in an attribution model to infer geographical origin which was tested using a further 383 UK clinical isolates to detect signatures of recent foreign travel. Patient records indicated that in 46 cases, travel abroad had occurred <2 weeks prior to sampling, and genomic analysis identified that 34 (74%) of these isolates were of a non‐UK origin. Identification of biogeographical markers in Campylobacter genomes will contribute to improved source attribution of clinical Campylobacter infection and inform intervention strategies to reduce campylobacteriosis.  相似文献   
993.
994.
995.
996.
Fabry disease (FD) is a lysosomal storage disorder, which develops due to a deficiency in the hydrolytic enzyme, α-galactosidase A (α-Gal A). Alpha-Gal A hydrolyzes glycosphingolipid globotriaosylceramide (Gb3), and an α-Gal A deficiency leads to Gb3 accumulation in tissues and cells in the body. This pathology is likely to involve multiple systems, but it is generally considered to affect primarily vascular endothelium. In this study, we investigated mutations in the GLA gene, which encodes α-Gal A, in Mexican families with FD. We included seven probands with FD that carried known mutations. We analysed pedigrees of the probands, and performed molecular screening in 65 relatives with the potential of carrying a GLA mutation. Five mutations (P40S, IVS4 +4, G328V, R363H, R404del) were detected in seven unrelated Mexican families with the classic FD phenotype. Of the 65 relatives examined, 42 (64.6%) had a GLA gene mutation. In summary, among seven Mexican probands with FD, 65 relatives were at risk of carrying a known GLA mutation, and molecular screening identified 42 individuals with the mutation. Thus, our findings showed that it is important to perform molecular analysis in families with FD to detect mutations and to provide accurate diagnoses for individuals that could be affected.  相似文献   
997.
Individual body mass often positively correlates with survival and reproductive success, whereas fitness costs of growing large are rarely detected in vertebrates in the wild. Evidence that adult body mass progressively declines with increasing age is accumulating across mammalian populations. Growing fast to a large body can increase the cellular damage accumulated throughout life, leading body growth in early life to be negatively associated with the rate of body mass senescence. Moreover, the onset of mass senescence may strongly depend on both sex‐specific reproductive tactics and environmental conditions. Assessing the timing and the rate of body mass decline with increasing age thus offers an opportunity to look for costs of having grown fast, especially after a poor start during early life, in both sexes and in different environments. Using a unique dataset including 30 years of longitudinal data on age‐specific body mass collected in two roe deer Capreolus capreolus populations subjected to contrasted environmental conditions, we looked for potential costs of high post‐weaning growth rate in terms of steeper rate of body mass senescence. Our analyses of body mass senescence accounted for the potential variation in the onset of senescence and allowed explicit comparisons of this variable between sexes and populations. Higher growth rates late in the growing period (after weaning) were associated with a steeper rate of body mass senescence, regardless of early mass (gained before weaning), but at different extents depending on sex and environmental conditions. Body mass senescence occurred earlier in males than in females, especially in the population facing limiting resources. In the wild, although heavy individuals generally survive better than small ones, the costs of growing large late in the growing period only became apparent late in life through mass senescence.  相似文献   
998.
999.
1000.

RCD1 is a member of the plant-specific SRO protein family. Several SRO genes have been functionally identified in the regulation of abiotic stresses in Arabidopsis and other plant species. However, the function of SROs is largely unknown in apple (Malus×domestica). In this study, six MdSRO-encoding genes were isolated, categorized into two types and mapped to six chromosomes. The phylogenetic analysis demonstrated that the sequences of the AtSRO and MdSRO proteins are highly conserved. Subsequently, expression analysis showed that MdSRO genes had different expression profiles in different tissues and in response to various stresses. Finally, MdRCD1 was isolated for functional identification. The results showed that resistance to oxidation stress in apple calli was enhanced by MdRCD1 overexpression and weakened by MdRCD1 suppression. MdRCD1 also played a crucial role in the regulation of ROS homeostasis in transgenic apple calli and Arabidopsis. Ectopic expression of MdRCD1 significantly enhanced resistance to salt and oxidative stresses in transgenic lines. In addition, MdRCD1 also enhanced drought tolerance due to its influence on stomatal opening. Based on these results, we conclude that MdRCD1 is an important regulator in abiotic stress response.

  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号