首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1209篇
  免费   84篇
  1293篇
  2022年   8篇
  2021年   26篇
  2020年   11篇
  2019年   17篇
  2018年   33篇
  2017年   38篇
  2016年   31篇
  2015年   44篇
  2014年   45篇
  2013年   115篇
  2012年   166篇
  2011年   184篇
  2010年   178篇
  2009年   96篇
  2008年   67篇
  2007年   22篇
  2006年   13篇
  2005年   8篇
  2004年   11篇
  2003年   10篇
  2002年   12篇
  2001年   14篇
  2000年   7篇
  1999年   7篇
  1998年   4篇
  1997年   5篇
  1995年   3篇
  1994年   5篇
  1993年   6篇
  1992年   8篇
  1991年   3篇
  1990年   2篇
  1989年   5篇
  1988年   10篇
  1987年   8篇
  1986年   3篇
  1985年   4篇
  1984年   8篇
  1983年   3篇
  1982年   3篇
  1981年   2篇
  1980年   3篇
  1979年   2篇
  1977年   4篇
  1975年   6篇
  1974年   4篇
  1973年   4篇
  1972年   3篇
  1971年   8篇
  1969年   2篇
排序方式: 共有1293条查询结果,搜索用时 17 毫秒
51.
The endosomal LeNHX2 ion transporter exchanges H+ with K+ and, to lesser extent, Na+. Here, we investigated the response to NaCl supply and K+ deprivation in transgenic tomato (Solanum lycopersicum L.) overexpressing LeNHX2 and show that transformed tomato plants grew better in saline conditions than untransformed controls, whereas in the absence of K+ the opposite was found. Analysis of mineral composition showed a higher K+ content in roots, shoots and xylem sap of transgenic plants and no differences in Na+ content between transgenic and untransformed plants grown either in the presence or the absence of 120 mm NaCl. Transgenic plants showed higher Na+/H+ and, above all, K+/H+ transport activity in root intracellular membrane vesicles. Under K+ limiting conditions, transgenic plants enhanced root expression of the high‐affinity K+ uptake system HAK5 compared to untransformed controls. Furthermore, tomato overexpressing LeNHX2 showed twofold higher K+ depletion rates and half cytosolic K+ activity than untransformed controls. Under NaCl stress, transgenic plants showed higher uptake velocity for K+ and lower cytosolic K+ activity than untransformed plants. These results indicate the fundamental role of K+ homeostasis in the better performance of LeNHX2 overexpressing tomato under NaCl stress.  相似文献   
52.
Cadmium (Cd) is highly toxic to plants causing growth reduction and chlorosis. It binds thiols and competes with essential transition metals. It affects major biochemical processes such as photosynthesis and the redox balance, but the connection between cadmium effects at the biochemical level and its deleterious effect on growth has seldom been established. In this study, two Cd hypersensitive mutants, cad1‐3 impaired in phytochelatin synthase (PCS1), and nramp3nramp4 impaired in release of vacuolar metal stores, have been compared. The analysis combines genetics with measurements of photosynthetic and antioxidant functions. Loss of AtNRAMP3 and AtNRAMP4 function or of PCS1 function leads to comparable Cd sensitivity. Root Cd hypersensitivities conferred by cad1‐3 and nramp3nramp4 are cumulative. The two mutants contrast in their tolerance to oxidative stress. In nramp3nramp4, the photosynthetic apparatus is severely affected by Cd, whereas it is much less affected in cad1‐3. In agreement with chloroplast being a prime target for Cd toxicity in nramp3nramp4, the Cd hypersensitivity of this mutant is alleviated in the dark. The Cd hypersensitivity of nramp3nramp4 mutant highlights the critical role of vacuolar metal stores to supply essential metals to plastids and maintain photosynthetic function under Cd and oxidative stresses.  相似文献   
53.
P2Y2 receptor expression is increased in intestinal epithelial cells (IECs) during inflammatory bowel diseases (IBDs). In this context, P2Y2 stimulates PGE2 release by IECs, suggesting a role in wound healing. For this study, we have used the non‐cancerous IEC‐6 cell line. IEC‐6 cell migration was determined using Boyden chambers and the single‐edged razor blade model of wounding. The receptor was activated using ATP, UTP, or 2‐thioUTP. Pharmacological inhibitors, a blocking peptide, a neutralizing antibody and interfering RNAs were used to characterize the signaling events. Focal adhesions and microtubule (MT) dynamics were determined by immunofluorescence using anti‐vinculin and anti‐acetylated‐α‐tubulin antibodies, respectively. In vivo, the dextran sodium sulfate mouse model of colitis was used to characterize the effects of P2Y2 agonist 2‐thioUTP on remission. We showed that P2Y2 increased cell migration and wound closure by recruiting Go protein with the cooperation of integrin αv. Following P2Y2 activation, we demonstrated that GSK3β activity was inhibited in response to Akt activation. This leads to MT stabilization and increased number of focal adhesions. In vivo, P2Y2 activation stimulates remission, as illustrated by a reduction in the disease activity index values and histological scores as compared to control mice. These findings highlight a novel function for this receptor in IECs. They also illustrate that P2Y receptors could be targeted for the development of innovative therapies for the treatment of IBDs. J. Cell. Physiol. 228: 99–109, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   
54.
With the diabetes epidemic affecting the world population, there is an increasing demand for means to regulate glycemia. Dietary glucose is first absorbed by the intestine before entering the blood stream. Thus, the regulation of glucose absorption by intestinal epithelial cells (IECs) could represent a way to regulate glycemia. Among the molecules involved in glycemia homeostasis, extracellular ATP, a paracrine signaling molecule, was reported to induce insulin secretion from pancreatic β cells by activating P2Y and P2X receptors. In rat's jejunum, P2X7 expression was previously immunolocalized to the apex of villi, where it has been suspected to play a role in apoptosis. However, using an antibody recognizing the receptor extracellular domain and thus most of the P2X7 isoforms, we showed that expression of this receptor is apparent in the top two‐thirds of villi. These data suggest a different role for this receptor in IECs. Using the non‐cancerous IEC‐6 cells and differentiated Caco‐2 cells, glucose transport was reduced by more than 30% following P2X7 stimulation. This effect on glucose transport was not due to P2X7‐induced cell apoptosis, but rather was the consequence of glucose transporter 2 (Glut2)'s internalization. The signaling pathway leading to P2X7‐dependent Glut2 internalization involved the calcium‐independent activation of phospholipase Cγ1 (PLCγ1), PKCδ, and PKD1. Although the complete mechanism regulating Glut2 internalization following P2X7 activation is not fully understood, modulation of P2X7 receptor activation could represent an interesting approach to regulate intestinal glucose absorption. J. Cell. Physiol. 228: 120–129, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   
55.
56.
ABSTRACT

Whales living within seismically active regions are subject to intense disturbances from strong sounds produced by earthquakes that can kill or injure individuals. Nishimura & Clark (1993) relate the possible effects of underwater earthquake noise levels in marine mammals, adducing that T-phase source signal level (10- to 30- Hz range) can exceed 200 dB re: 1 μPa at 1 m, for a magnitude 4–5 earthquake, sounds audible to fin whales which produce low frequency sounds of 16–20/25–44 Hz over 0.5–1s, typically of 183 dB re: 1 μPa at 1 m. Here we present the response of a fin whale to a 5.5 Richter scale earthquake that took place on 22 February 2005, in the Gulf of California. The whale covered 13 km in 26 min (mean speed = 30.2 km/h). We deduce that the sound heard by this whale might have triggered the costly energy expenditure of high speed swimming as a seismic-escape response. These observations support the hypothesis of Richardson et al. (1995) that cetaceans may flee from loud sounds before they are injured, when exposed to noise in excess of 140 dB re: 1 μPa 1 m.  相似文献   
57.
The endemic occurrence of obesity and the associated risk factors that constitute the metabolic syndrome have been predicted to lead to a dramatic increase in chronic liver disease. Non-alcoholic steatohepatitis (NASH) has become the most frequent liver disease in countries with a high prevalence of obesity. In addition, hepatic steatosis and insulin resistance have been implicated in disease progression of other liver diseases, including chronic viral hepatitis and hepatocellular carcinoma. The molecular mechanisms underlying the link between insulin signaling and hepatocellular injury are only partly understood. We have explored the role of the antiapoptotic caspase-8 homolog cellular FLICE-inhibitory protein (cFLIP) on liver cell survival in a diabetic model with hypoinsulinemic diabetes in order to delineate the role of insulin signaling on hepatocellular survival. cFLIP regulates cellular injury from apoptosis signaling pathways, and loss of cFLIP was previously shown to promote injury from activated TNF and CD95/Apo-1 receptors. In mice lacking cFLIP in hepatocytes (flip−/−), loss of insulin following streptozotocin treatment resulted in caspase- and c-Jun N-terminal kinase (JNK)-dependent liver injury after 21 days. Substitution of insulin, inhibition of JNK using the SP600125 compound in vivo or genetic deletion of the mitogen-activated protein kinase (MAPK)9 (JNK2) in all tissues abolished the injurious effect. Strikingly, the difference in injury between wild-type and cFLIP-deficient mice occurred only in vivo and was accompanied by liver-infiltrating inflammatory cells with a trend toward increased amounts of NK1.1-positive cells and secretion of proinflammatory cytokines. Transfer of bone marrow from rag-1-deficient mice that are depleted from B and T lymphocytes prevented liver injury in flip−/− mice. These findings support a direct role of insulin on cellular survival by alternating the activation of injurious MAPK, caspases and the recruitment of inflammatory cells to the liver. Thus, increasing resistance to insulin signaling pathways in hepatocytes appears to be an important factor in the initiation and progression of chronic liver disease.  相似文献   
58.
59.
Positive interactions between plants play a fundamental role in environments with extreme conditions, such as coastal sand dunes, where the establishment of many species is limited by high temperature, and low availability of water and nutrients in the soil. The ability to store water and enrich the soil with nutrients characterizes bromeliads as potential nurse plants for other species. This study aimed to analyze the potential of the bromeliad Vriesea friburgensis to act as a nurse plant, and to compare this interaction in coastal dunes in herbaceous versus scrub vegetation. The study was performed on Santa Catarina Island in Brazil. Juveniles of other species associated with V. friburgensis were collected within and under bromeliad tanks and on adjacent plots beside each bromeliad. The abundance, species richness and height of juveniles were recorded. We found that abundance and richness of Vf‐associated juveniles were lower than those Vf‐not associated, in herbaceous vegetation (negative interaction). However, the height of some shrubs species, like Eupatorium casarettoi and Tibouchina urvilleana, was greater when Vf‐associated (positive interaction). In scrub vegetation, the abundance and richness of juveniles were not significantly affected by V. friburgensis presence (neutral interaction). However, the height of some shrubs and trees species, like Clusia criuva, Eugenia catharinae, Myrsine parvifolia and Ocotea pulchella, was greater when Vf‐associated. Species composition associated with V. friburgensis differed from the assemblage in adjacent plots, indicating that some species interact more with nurse plants, whereas others fail to develop when associated with this bromeliad; the difference between groups in species composition was less evident in scrub vegetation areas. Clusia criuva was considered an indicator species for Vf‐associated juveniles in both vegetation types. Despite the fact that these tank bromeliads do not function as nurse plants for some species, there are others that seem to be favoured by this interaction.  相似文献   
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号