首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2590篇
  免费   287篇
  2023年   31篇
  2022年   48篇
  2021年   91篇
  2020年   75篇
  2019年   88篇
  2018年   143篇
  2017年   140篇
  2016年   150篇
  2015年   181篇
  2014年   182篇
  2013年   327篇
  2012年   294篇
  2011年   274篇
  2010年   235篇
  2009年   174篇
  2008年   76篇
  2007年   51篇
  2006年   47篇
  2005年   23篇
  2004年   25篇
  2003年   14篇
  2002年   14篇
  2001年   14篇
  2000年   13篇
  1999年   9篇
  1998年   11篇
  1997年   5篇
  1995年   11篇
  1994年   4篇
  1993年   14篇
  1992年   10篇
  1991年   4篇
  1990年   4篇
  1989年   6篇
  1988年   5篇
  1987年   3篇
  1986年   3篇
  1984年   6篇
  1978年   6篇
  1977年   4篇
  1976年   4篇
  1973年   9篇
  1972年   3篇
  1969年   2篇
  1967年   3篇
  1962年   8篇
  1960年   3篇
  1959年   4篇
  1940年   3篇
  1930年   2篇
排序方式: 共有2877条查询结果,搜索用时 15 毫秒
51.
Assembly of microbial communities is shaped by various physical and chemical factors deriving from their environment, including other microbes inhabiting the certain niche. In addition to direct cell–cell contacts, primary and secondary metabolites impact the growth of microbial community members. Metabolites might act as growth-promoting (e.g., cross-feeding), growth-inhibiting (e.g., antimicrobials) or signalling molecules. In multi-species microbial assemblies, secreted metabolites might influence specific members of the community, altering species abundances and therefore the functioning of these microcosms. In the current issue, Cosetta and colleagues describe a unique volatile metabolite-mediated cross-kingdom interaction that shapes the cheese rind community assembly. The study paves the way of our understanding how fungus-produced volatile compounds promote the growth of a certain bacterial genus, a principal connection between community members of the cheese rind.  相似文献   
52.
Microbial communities in natural ecosystems are subject to strong ecological rules. The study of local communities along a regional metacommunity can reveal patterns of community assembly, and disentangle the underlying ecological processes. In particular, we seek drivers of community assembly at the regional scale using a large lacustrine dataset (>300 lakes) along the geographical, limnological and physico-chemical gradients in the Pyrenees. By using high throughput amplicon sequencing of the 16S rRNA gene, and inferring environmental sources of bacterial immigrants, we showed that surface aquatic bacterial assemblages were strongly influenced by terrestrial populations from soil, biofilms or sediments, and primarily selected by a pH-alkalinity gradient. Indeed, source proportions explained 27% of the community variation, and chemistry 15% of the total variation, half of it shared with the sources. Major taxonomic groups such as Verrucomicrobia, Actinobacteria and Bacteroidetes showed higher aquatic affinities than Parcubacteria, Gammaproteobacteria, Alphaproteobacteria or Betaproteobacteria, which may be recruited and selected through different hydrographic habitats. A regional fingerprint was observed with lower alpha diversity and higher beta diversity in the central Pyrenees than in both ends. We suggest an ecological succession process, likely influenced by complex interactions of environmental source dispersal and environmental filtering along the mountain range geography.  相似文献   
53.
Climate change scenarios predict tropical cyclones will increase in both frequency and intensity, which will escalate the amount of terrestrial run-off and mechanical disruption affecting coastal ecosystems. Bacteria are key contributors to ecosystem functioning, but relatively little is known about how they respond to extreme storm events, particularly in nearshore subtropical regions. In this study, we combine field observations and mesocosm experiments to assess bacterial community dynamics and changes in physicochemical properties during early- and late-season tropical cyclones affecting Okinawa, Japan. Storms caused large and fast influxes of freshwater and terrestrial sediment – locally known as red soil pollution – and caused moderate increases of macronutrients, especially SiO2 and PO43−, with up to 25 and 0.5 μM respectively. We detected shifts in relative abundances of marine and terrestrially derived bacteria, including putative coral and human pathogens, during storm events. Soil input alone did not substantially affect marine bacterial communities in mesocosms, indicating that other components of run-off or other storm effects likely exert a larger influence on bacterial communities. The storm effects were short-lived and bacterial communities quickly recovered following both storm events. The early- and late-season storms caused different physicochemical and bacterial community changes, demonstrating the context-dependency of extreme storm responses in a subtropical coastal ecosystem.  相似文献   
54.
Journal of Physiology and Biochemistry - Connections between the midbrain dorsolateral periaqueductal grey (dlPAG) and the pontine A5 region have been shown. The stimulation of both regions evokes...  相似文献   
55.
56.
Baysal  Can  Pérez-González  Ana  Eseverri  Álvaro  Jiang  Xi  Medina  Vicente  Caro  Elena  Rubio  Luis  Christou  Paul  Zhu  Changfu 《Transgenic research》2020,29(1):37-52

Mitochondria fulfil essential functions in respiration and metabolism as well as regulating stress responses and apoptosis. Most native mitochondrial proteins are encoded by nuclear genes and are imported into mitochondria via one of several receptors that recognize N-terminal signal peptides. The targeting of recombinant proteins to mitochondria therefore requires the presence of an appropriate N-terminal peptide, but little is known about mitochondrial import in monocotyledonous plants such as rice (Oryza sativa). To gain insight into this phenomenon, we targeted nuclear-encoded enhanced green fluorescent protein (eGFP) to rice mitochondria using six mitochondrial pre-sequences with diverse phylogenetic origins, and investigated their effectiveness by immunoblot analysis as well as confocal and electron microscopy. We found that the ATPA and COX4 (Saccharomyces cerevisiae), SU9 (Neurospora crassa), pFA (Arabidopsis thaliana) and OsSCSb (Oryza sativa) peptides successfully directed most of the eGFP to the mitochondria, whereas the MTS2 peptide (Nicotiana plumbaginifolia) showed little or no evidence of targeting ability even though it is a native plant sequence. Our data therefore indicate that the presence of particular recognition motifs may be required for mitochondrial targeting, whereas the phylogenetic origin of the pre-sequences probably does not play a key role in the success of mitochondrial targeting in dedifferentiated rice callus and plants.

  相似文献   
57.
The aim of this study was to analyze the performance of Acaena elongata colonized by arbuscular mycorrhizal fungi (AMF) to different phosphorus (P) concentrations, as a measure of AMF dependency. A. elongata, is a species from soils where P availability is limited, such as temperate forests. Our research questions were: 1) How do different P concentrations affect the AMF association in Acaena elongata, and 2) How does the AMF association influence A. elongata’s growth under different P concentrations? A. elongata’s growth, P content in plant tissue, AMF colonization and dependency were measured under four P concentrations: control (0 g P kg−1 ), low (0.05 g P kg−1 ), intermediate (0.2 g P kg−1 ) and high (2 g P kg−1 ) in different harvests. A complete randomized block design was applied. A. elongata’s growth was higher under -AMF in intermediate and high P concentrations, and the lowest growth corresponded to +AMF in the low and intermediate P concentration. We observed a negative effect on the root biomass under +AMF in intermediate P concentration, while the P concentration had a positive effect on the leaf area ratio. The AMF colonization in A. elongata decreased in the highest P concentration and it was favored under intermediate P concentration; while the low and the high concentrations generated a cost-benefit imbalance. Our results suggest that the performance of some plant species in soils with low P availability may not be favored by their association with AMF, but a synergy between AMF and intermediate P concentrations might drive A. elongata’s growth.  相似文献   
58.
Chickpea contains high levels of protein, vitamins and minerals. Acceptable chickpea yield is the result of meeting nitrogen and phosphorus requirements. The effect of appropriately meeting such requirements reflects on growth and can easily be evaluated using growth analysis. This research determined: (a) The effect of nitrogen and phosphorus fertilization on phenology, net assimilation rate, number of green leaves, leaf area, leaf area index and leaf area duration; (b) Green chickpea yield and number of pods due to fertilization; and (c) The combination of nitrogen and phosphorus fertilization that yields the most net revenue. Nitrogen and phosphorus fertilization was evaluated; each at the doses of 0, 75 and 150 kg ha–1 (N0, N75, N150; P0, P75 and P150, respectively). The combination of the levels of both nutrients generated nine combinations of treatments which were distributed in the field in a randomized complete block design in an arrangement of divided plots with four repetitions. Timing of phenological phases were similar among treatments. Nitrogen and phosphorus fertilization increased number of leaves, leaf area index, and leaf area duration that translated into increased green chickpea yield (GCY). Combinations N150-P75 and N150-P150 produced the highest GCY. The highest net revenue and revenue per peso invested was obtained with N150-P75.  相似文献   
59.
Plant Cell, Tissue and Organ Culture (PCTOC) - Steviol glycosides (SGs) and gibberellins (GAs) share the same molecular basis. However, the coordination of their respective biosynthetic pathways is...  相似文献   
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号