首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   32206篇
  免费   16295篇
  国内免费   2篇
  2023年   54篇
  2022年   148篇
  2021年   537篇
  2020年   2296篇
  2019年   3816篇
  2018年   3939篇
  2017年   4216篇
  2016年   4248篇
  2015年   4229篇
  2014年   3860篇
  2013年   4450篇
  2012年   2150篇
  2011年   1843篇
  2010年   3280篇
  2009年   2007篇
  2008年   899篇
  2007年   481篇
  2006年   461篇
  2005年   502篇
  2004年   469篇
  2003年   457篇
  2002年   423篇
  2001年   434篇
  2000年   365篇
  1999年   288篇
  1998年   91篇
  1997年   86篇
  1996年   86篇
  1995年   94篇
  1994年   91篇
  1993年   111篇
  1992年   157篇
  1991年   128篇
  1990年   120篇
  1989年   101篇
  1988年   109篇
  1987年   83篇
  1986年   86篇
  1985年   103篇
  1984年   84篇
  1983年   71篇
  1982年   71篇
  1981年   53篇
  1978年   63篇
  1977年   55篇
  1976年   66篇
  1975年   57篇
  1974年   53篇
  1973年   64篇
  1972年   52篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
101.
102.
103.
The spatial epidemiology of Bluetongue virus (BTV) at the landscape level relates to the fine‐scale distribution and dispersal capacities of its vectors, midges belonging to the genus Culicoides Latreille (Diptera: Ceratopogonidae). Although many previous researches have carried out Culicoides sampling on farms, little is known of the fine‐scale distribution of Culicoides in the landscape immediately surrounding farms. The aim of this study was to gain a better understanding of Culicoides populations at increasing distances from typical dairy farms in north‐west Europe, through the use of eight Onderstepoort‐type black‐light traps positioned along linear transects departing from farms, going through pastures and entering woodlands. A total of 16 902 Culicoides were collected in autumn 2008 and spring 2009. The majority were females, of which more than 97% were recognized as potential vectors. In pastures, we found decreasing numbers of female Culicoides as a function of the distance to the farm. This pattern was modelled by leptokurtic models, with parameters depending on season and species. By contrast, the low number of male Culicoides caught were homogeneously distributed along the transects. When transects entered woodlands, we found a higher abundance of Culicoides than expected considering the distance of the sampling sites to the farm, although this varied according to species.  相似文献   
104.
105.
106.
107.
108.
Oceanic islands are productive habitats for generating new species and high endemism, which is primarily due to their geographical isolation, smaller population sizes and local adaptation. However, the short divergence times and subtle morphological or ecological divergence of insular organisms may obscure species identity, so the cryptic endemism on islands may be underestimated. The endangered weevil Pachyrhynchus sonani Kôno (Coleoptera: Curculionidae: Entiminae: Pachyrhynchini) is endemic to Green Island and Orchid Island of the Taiwan‐Luzon Archipelago and displays widespread variation in coloration and host range, thus raising questions regarding its species boundaries and degree of cryptic diversity. We tested the species boundaries of P. sonani using an integrated approach that combined morphological (body size and shape, genital shape, coloration and cuticular scale), genetic (four genes and restriction site‐associated DNA sequencing, RAD‐seq) and ecological (host range and distribution) diversity. The results indicated that all the morphological datasets for male P. sonani, except for the colour spectrum, reveal overlapping but statistically significant differences between islands. In contrast, the morphology of the female P. sonani showed minimum divergence between island populations. The populations of P. sonani on the two islands were significantly different in their host ranges, and the genetic clustering and phylogenies of P. sonani established two valid evolutionary species. Integrated species delimitation combining morphological, molecular and ecological characters supported two distinct species of P. sonani from Green Island and Orchid Island. The Green Island population was described as P. jitanasaius sp.n. Chen & Lin, and it is recommended that its threatened conservation status be recognized. Our findings suggest that the inter‐island speciation of endemic organisms inhabiting both islands may be more common than previously thought, and they highlight the possibility that the cryptic diversity of small oceanic islands may still be largely underestimated.  相似文献   
109.
110.
The explosion of bioinformatics technologies in the form of next generation sequencing (NGS) has facilitated a massive influx of genomics data in the form of short reads. Short read mapping is therefore a fundamental component of next generation sequencing pipelines which routinely match these short reads against reference genomes for contig assembly. However, such techniques have seldom been applied to microbial marker gene sequencing studies, which have mostly relied on novel heuristic approaches. We propose NINJA Is Not Just Another OTU-Picking Solution (NINJA-OPS, or NINJA for short), a fast and highly accurate novel method enabling reference-based marker gene matching (picking Operational Taxonomic Units, or OTUs). NINJA takes advantage of the Burrows-Wheeler (BW) alignment using an artificial reference chromosome composed of concatenated reference sequences, the “concatesome,” as the BW input. Other features include automatic support for paired-end reads with arbitrary insert sizes. NINJA is also free and open source and implements several pre-filtering methods that elicit substantial speedup when coupled with existing tools. We applied NINJA to several published microbiome studies, obtaining accuracy similar to or better than previous reference-based OTU-picking methods while achieving an order of magnitude or more speedup and using a fraction of the memory footprint. NINJA is a complete pipeline that takes a FASTA-formatted input file and outputs a QIIME-formatted taxonomy-annotated BIOM file for an entire MiSeq run of human gut microbiome 16S genes in under 10 minutes on a dual-core laptop.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号