首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   251篇
  免费   47篇
  2023年   2篇
  2022年   1篇
  2021年   4篇
  2020年   2篇
  2019年   5篇
  2018年   9篇
  2017年   15篇
  2016年   8篇
  2015年   14篇
  2014年   10篇
  2013年   24篇
  2012年   16篇
  2011年   19篇
  2010年   10篇
  2009年   11篇
  2008年   11篇
  2007年   14篇
  2006年   13篇
  2005年   8篇
  2004年   12篇
  2003年   12篇
  2002年   7篇
  2001年   6篇
  2000年   5篇
  1999年   7篇
  1998年   2篇
  1997年   1篇
  1996年   1篇
  1995年   2篇
  1994年   1篇
  1993年   2篇
  1992年   4篇
  1991年   3篇
  1990年   2篇
  1989年   4篇
  1988年   4篇
  1987年   3篇
  1986年   3篇
  1985年   7篇
  1984年   3篇
  1982年   1篇
  1981年   2篇
  1980年   2篇
  1979年   2篇
  1977年   1篇
  1976年   2篇
  1956年   1篇
排序方式: 共有298条查询结果,搜索用时 203 毫秒
171.
Activation of the JAK/STAT pathway in vascular smooth muscle by serotonin   总被引:4,自引:0,他引:4  
Serotonin (5-hydroxytryptamine, 5-HT) is a vasoconstrictor and mitogen whose levels are elevated in diabetes. Previous studies have shown the presence of 5-HT2A, 5-HT2B, and 5-HT1B receptors in vascular smooth muscle cells (VSMCs). There are currently no data regarding 5-HT2B and 5-HT1B receptor activation of the JAK/STAT pathway in VSMCs and resultant potential alterations in 5-HT signaling in diabetes. Therefore, we tested the hypothesis that 5-HT differentially activates the JAK/STAT pathway in VSMCs under conditions of normal (5 mM) and high (25 mM) glucose. Treatment of rat VSMCs with 5-HT (10–6 M) resulted in time-dependent activation (2-fold) of JAK2, JAK1, and STAT1, but not STAT3 (maximal at 5 min, returned to baseline by 30 min). The 5-HT2B receptor agonist BW723C86 and the 5-HT1B receptor agonist CGS12066A (10–9–10–5 M, 5-min stimulation) did not activate the JAK/STAT pathway. Treatment with the 5-HT2A receptor antagonist ketanserin (10 nM) inhibited JAK2 activation by 5-HT. Treatment of streptozotocin-induced diabetic rats with ketanserin (5 mg·kg–1·day–1) reduced activation of JAK2 and STAT1 but not STAT3 in endothelium-denuded thoracic aorta in vivo. 5-HT (10–6 M) treatment resulted in increased cell proliferation and increased DNA synthesis, which were inhibited by the JAK2 inhibitor AG490. Further studies with apocynin, diphenyleneiodonium chloride, catalase, and virally transfected superoxide dismutase had no effect at either glucose concentration on activation of the JAK/STAT pathway by 5-HT. Therefore, we conclude that 5-HT activates JAK2, JAK1, and STAT1 via the 5-HT2A receptors in a reactive oxygen species-independent manner under both normal and high glucose conditions. reactive oxygen species; 5-hydroxytryptamine  相似文献   
172.
Burrus V  Marrero J  Waldor MK 《Plasmid》2006,55(3):173-183
SXT is an integrating conjugative element (ICE) that was initially isolated from a 1992 Vibrio cholerae O139 clinical isolate from India. This approximately 100-kb ICE encodes resistance to multiple antibiotics. SXT or closely related ICEs are now present in most clinical and some environmental V. cholerae isolates from Asia and Africa. SXT-related ICEs are not limited to V. cholerae. It is now clear that so-called IncJ elements such as R391 are closely related to SXT. More than 25 members of the SXT/R391 family of ICEs have now been identified in environmental and clinical isolates of diverse species of gamma-proteobacteria worldwide. In this review, we discuss the diversity, evolution and biology of this family of ICEs.  相似文献   
173.
Previously we demonstrated that BMP signaling is required for endogenous digit tip regeneration, and that treatment with BMP-2 or -7 induces a regenerative response following amputation at regeneration-incompetent levels (Yu et al., 2010 and Yu et al., 2012). Both endogenous regeneration and BMP-induced regeneration are associated with the transient formation of a blastema, however the formation of a regeneration blastema in mammals is poorly understood. In this study, we focus on how blastema cells respond to BMP signaling during neonatal digit regeneration in mice. First, we show that blastema cells retain regenerative properties after expansion in vitro, and when re-introduced into the amputated digit, these cells display directed migration in response to BMP-2. However, in vitro studies demonstrate that BMP-2 alone does not influence blastema cell migration, suggesting a requirement of another pivotal downstream factor for cell recruitment. We show that blastema cell migration is stimulated by the cytokine, SDF-1α, and that SDF-1α is expressed by the wound epidermis as well as endothelial cells of the blastema. Blastema cells express both SDF-1α receptors, CXCR4 and CXCR7, although the migration response is inhibited by the CXCR4-specific antagonist, AMD3100. Mice treated with AMD3100 display a partial inhibition of skeletal regrowth associated with the regeneration response. We provide evidence that BMP-2 regulates Sdf-1α expression in endothelial cells but not cells of the wound epidermis. Finally, we show that SDF-1α-expressing COS1 cells engrafted into a regeneration-incompetent digit amputation wound resulted in a locally enhanced population of CXCR4 positive cells, and induced a partial regenerative response. Taken together, this study provides evidence that one downstream mechanism of BMP signaling during mammalian digit regeneration involves activation of SDF-1α/CXCR4 signaling by endothelial cells to recruit blastema cells.  相似文献   
174.
175.
176.
Glioblastoma is one of the most aggressive brain tumors. We have previously found up-regulation of growth differentiation factor 15 (GDF15) in glioblastoma cells treated with the anticancer agent fenofibrate. Sequence analysis of GDF15 revealed the presence of a microRNA, miR-3189, in the single intron. We then asked whether miR-3189 was expressed in clinical samples and whether it was functional in glioblastoma cells. We found that expression of miR-3189-3p was down-regulated in astrocytoma and glioblastoma clinical samples compared with control brain tissue. In vitro, the functionality of miR-3189-3p was tested by RNA-binding protein immunoprecipitation, and miR-3189-3p coimmunoprecipitated with Argonaute 2 together with two of its major predicted gene targets, the SF3B2 splicing factor and the guanine nucleotide exchange factor p63RhoGEF. Overexpression of miR-3189-3p resulted in a significant inhibition of cell proliferation and migration through direct targeting of SF3B2 and p63RhoGEF, respectively. Interestingly, miR-3189-3p levels were increased by treatment of glioblastoma cells with fenofibrate, a lipid-lowering drug with multiple anticancer activities. The attenuated expression of miR-3189-3p in clinical samples paralleled the elevated expression of SF3B2, which could contribute to the activation of SF3B2 growth-promoting pathways in these tumors. Finally, miR-3189-3p-mediated inhibition of tumor growth in vivo further supported the function of this microRNA as a tumor suppressor.  相似文献   
177.
178.
In recent years, the increasing use of fish as new animal models in scientific research and the growth of fish farming (mainly for human consumption) have highlighted the need for advanced technology to deepen our knowledge of fish biology. Hence, the present study was carried out to radiologically analyse the whole body of gilthead seabream (Sparus aurata) specimens using X-ray computed tomography (CT). Images were acquired in an Albira SPECT/PET/CT tri-modal preclinical-scanner. Segmentation, measurements and three-dimensional reconstruction were made using the Carestream Molecular imaging Albira CT system in conjunction with Pmod, AMIDE and Amira software packages. The results showed that the density values of gilthead seabream are in the range −700 to +2500 HU for the whole body. We also determined the density ranges that topographically coincide with the swim bladder, soft tissues, fat, skin and skeleton. This work describes, validates and demonstrates the application of a fully automated image analysis technique to study and quantify fish body composition, whether segmented or as a whole. In addition, the basis for applying this image technique in other in vivo studies is established.  相似文献   
179.
180.
Complement factor H (CFH) is a central regulator of the complement system and has been implicated in the etiology of age-related macular degeneration (AMD), a leading cause of blindness in the elderly. In view of previous studies showing that reduced expression of CFH in the retina is a risk factor for developing AMD, there is significant interest in understanding how CFH expression is regulated in the retina. In this study, we have shown that the anti-inflammatory cytokine, IL-27, induced CFH expression in mouse retinal cells and human retinal pigmented epithelial cells (RPE) through STAT1-mediated up-regulation of Interferon Regulatory Factor-1 (IRF-1) and IRF-8. We further show that cells in the ganglion and inner-nuclear layers of the retina constitutively express IRF-1 and IRF-8 and enhanced CFH expression in the retina during ocular inflammation correlated with significant increase in the expression of IRF-1, IRF-8 and IL-27 (IL-27p28 and Ebi3). Our data thus reveal a novel role of IL-27 in regulating complement activation through up-regulation of CFH and suggest that defects in IL-27 signaling or expression may contribute to the reduction of CFH expression in the retina of patients with AMD.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号