首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   28篇
  免费   0篇
  2022年   1篇
  2021年   5篇
  2019年   2篇
  2018年   1篇
  2016年   1篇
  2015年   2篇
  2014年   1篇
  2013年   2篇
  2012年   3篇
  2011年   1篇
  2010年   1篇
  2009年   1篇
  2008年   1篇
  2006年   2篇
  2003年   4篇
排序方式: 共有28条查询结果,搜索用时 15 毫秒
1.
2.
Nitric oxide (NO) dysfunction has been found to be an important factor in both the development and progression of diabetic complications due to its many roles in the vascular system. Multifunctional compounds with hypoglycemic and endothelial protective action will be promising agents for the treatment of diabetes and its complications. In this study, a series of novel NO-donating sitagliptin derivatives and relevant metabolites were synthesized and evaluated as potential multifunctional hypoglycemic agents. All of synthetic compounds shown remarkable inhibitory activity against dipeptidyl peptidase IV (DPP-IV) in vitro and demonstrated excellent hypoglycemic activities in diabetic mice, similar to the activity of sitagliptin, and compounds T1-T4 shown different extents of NO-releasing abilities and potent antioxidant abilities in vivo. By screening in DPP-4, compound T4 was recognized as a potent DPP-4 inhibitor with the IC50 value of 0.060?μM. Docking study revealed compound T4 has a favorable binding mode. Furthermore, compounds T1-T4 exhibited different extents of NO-releasing abilities and excellent anti-platelet aggregation in vitro. The overall results suggested that T4 could help to the amelioration of endothelial dysfunction by reducing blood glucose, lessening oxidative stress and raising NO levels as well as inhibiting platelet aggregation. Based on this research, compound T4 deserves further investigation as potential new multifunctional anti-diabetic agent with antioxidant, anti-platelet aggregation and endothelial protective properties.  相似文献   
3.
4.
5.
6.
Wang  Zizhang  Chen  Xu  Liang  Qinlong  An  Yuan  Wei  Meng  Shi  Wei 《Journal of molecular histology》2021,52(5):1007-1020

Glioma remains the most common malignant tumors in the central nervous system and often has poor prognosis. In recent years, it has been gradually revealed that non-coding RNA effects glioma progression. In this study, we aimed to investigate the significance of circular RNA TLK1 (Circ-TLK1) in predicting the survival of glioma patients as well as its role in glioma development via both in-vitro and in-vivo experiments. We found that Circ-TLK1 was conspicuously up-regulated in glioma tissues compared with adjacent normal tissues, and the up-regulated Circ-TLK1 was significantly correlated with glioma patients’ larger tumor volume and higher grades. Functionally, Circ-TLK1 over-expression facilitated glioma growth, migration and invasion, inhibited cell apoptosis, and accelerated PANX1/MAPK/ERK expression, while Circ-TLK1 low expression had the opposite effects. In addition, bioinformatics analysis showed that miR-17-5p was a potential target of Circ-TLK1 and targeted at PANX1. Furthermore, through dual luciferase viability assay, Circ-TLK1 acted as a competing endogenous RNA by sponging miR-17-5p, which targeted and inhibited PANX1/MAPK/ERK expression. MiR-17-5p overexpression mitigated glioma progression, which was significantly inhibited with Circ-TLK1 upregulation. In conclusion, this study confirmed a novel axis of Circ-TLK1-miR-17-5p-PANX1 in modulating glioma development, providing more references for glioma diagnosis and targeted therapy.

  相似文献   
7.
Wang Z  Wang T 《Proteomics》2011,11(2):225-238
Diurnal physiological acclimation regulated by a circadian system is an advantage for plant fitness. The circadian system is composed of a signal input, the clock and output pathways. Understanding the regulation mechanism of the output pathways remains a major challenge. Diurnal proteomic change reflects the state of circadian organization. We found the content of glucose, fructose, sucrose and starch diurnally changed in leaves of rice seedlings grown under a 12-h light/12-h dark condition with constant temperature. Dynamic proteomics analysis revealed 140 protein spots with diurnally changed levels at six times of the light/dark cycle; 132 spots were identified by MS, and 119 spots were of a single protein each with functional annotation. These proteins are involved in regulation of carbohydrate flow, redox, protein folding, nitrogen and protein metabolism, energy conversion, photorespiration and photosynthesis. Of these proteins, 81.5% were upregulated during the light phase, overlappingly, 41.2% showed behavior of circadian anticipation to dawn. Pattern analysis showed that the diurnal regulation involved pathways of allocation of carbohydrates between temporary reserves and consumption, maintenance of redox homeostasis, diurnal protein reassembly and nitrogen assimilation. These pathways reflect biochemical phenotypes of the circadian change linking the oscillator and circadian outputs.  相似文献   
8.
The potential of unintended effects caused by transgenic events is a key issue in the commercialization of genetically modified (GM) crops. To investigate whether transgenic events cause unintended effects, we used comparative proteomics approaches to evaluate proteome differences in seeds from 2 sets of GM indica rice, herbicide-resistant Bar68-1 carrying bar and insect-resistant 2036-1a carrying cry1Ac/sck, and their respective controls D68 and MH86, as well as indica variety MH63, a parental line for breeding MH86, and japonica variety ZH10. This experimental design allowed for comparing proteome difference caused by transgenes, conventional genetic breeding, and natural genetic variation. Proteomics analysis revealed the maximum numbers of differentially expressed proteins between indica and japonica cultivars, second among indica varieties with relative small difference between MH86 and MH63, and the minimum between GM rice and respective control, thus indicating GM events do not substantially alter proteome profiles as compared with conventional genetic breeding and natural genetic variation. Mass spectrometry analysis revealed 234 proteins differentially expressed in the 6 materials, and these proteins were involved in different cellular and metabolic processes with a prominent skew toward metabolism (31.2%), protein synthesis and destination (25.2%), and defense response (22.4%). In these seed proteomes, proteins implicated in the 3 prominent biological processes showed significantly different composite expression patterns and were major factors differentiating japonica and indica cultivars, as well as indica varieties. Thus, metabolism, protein synthesis and destination, and defense response in seeds are important in differentiating rice cultivars and varieties.  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号