排序方式: 共有46条查询结果,搜索用时 14 毫秒
1.
The role of the integral membrane nucleoporins Ndc1p and Pom152p in nuclear pore complex assembly and function 下载免费PDF全文
The nuclear pore complex (NPC) is a large channel that spans the two lipid bilayers of the nuclear envelope and mediates transport events between the cytoplasm and the nucleus. Only a few NPC components are transmembrane proteins, and the role of these proteins in NPC function and assembly remains poorly understood. We investigate the function of the three integral membrane nucleoporins, which are Ndc1p, Pom152p, and Pom34p, in NPC assembly and transport in Saccharomyces cerevisiae. We find that Ndc1p is important for the correct localization of nuclear transport cargoes and of components of the NPC. However, the role of Ndc1p in NPC assembly is partially redundant with Pom152p, as cells lacking both of these proteins show enhanced NPC disruption. Electron microscopy studies reveal that the absence of Ndc1p and Pom152p results in aberrant pores that have enlarged diameters and lack proteinaceous material, leading to an increased diffusion between the cytoplasm and the nucleus. 相似文献
2.
Improper chromosome synapsis is associated with elongated RAD51 structures in the maize<Emphasis Type="Italic"> desynaptic2</Emphasis> mutant 总被引:3,自引:0,他引:3
The RecA homolog, RAD51, performs a central role in catalyzing the DNA strand exchange event of meiotic recombination. During meiosis, RAD51 complexes develop on pairing chromosomes and then most disappear upon synapsis. In the maize meiotic mutant desynaptic2 (dsy2), homologous chromosome pairing and recombination are reduced by ~70% in male meiosis. Fluorescent in situ hybridization studies demonstrate that a normal telomere bouquet develops but the pairing of a representative gene locus is still only 25%. Chromosome synapsis is aberrant as exemplified by unsynapsed regions of the chromosomes. In the mutant, we observed unusual RAD51 structures during chromosome pairing. Instead of spherical single and double RAD51 structures, we saw long thin filaments that extended along or around a single chromosome or stretched between two widely separated chromosomes. Mapping with simple sequence repeat (SSR) markers places the dsy2 gene to near the centromere on chromosome 5, therefore it is not an allele of rad51. Thus, the normal dsy2 gene product is required for both homologous chromosome synapsis and proper RAD51 filament behavior when chromosomes pair. Edited by: P. Moens 相似文献
3.
W. Zacheus Cande: Evolutionary biologist in cell biologist's clothing. Interview by Ruth Williams 下载免费PDF全文
Cande WZ 《The Journal of cell biology》2007,178(5):718-719
Zac Cande wants to get to the roots of cell division and cytoskeletal mechanics. 相似文献
4.
Lillian K. Fritz-Laylin Zoe June Assaf Sean Chen W. Zacheus Cande 《Eukaryotic cell》2010,9(6):860-865
Centrioles and basal bodies are discrete structures composed of a cylinder of nine microtubule triplets and associated proteins. Metazoan centrioles can be found at mitotic spindle poles and are called basal bodies when used to organize microtubules to form the core structure of flagella. Naegleria gruberi, a unicellular eukaryote, grows as an amoeba that lacks a cytoplasmic microtubule cytoskeleton. When stressed, Naegleria rapidly (and synchronously) differentiates into a flagellate, forming a complete cytoplasmic cytoskeleton de novo, including two basal bodies and flagella. Here, we show that Naegleria has genes encoding conserved centriole proteins. Using novel antibodies, we describe the localization of three centrosomal protein homologs (SAS-6, γ-tubulin, and centrin-1) during the assembly of the flagellate microtubule cytoskeleton. We also used these antibodies to show that Naegleria expresses the proteins in the same order as their incorporation into basal bodies, with SAS-6 localizing first, followed by centrin and finally γ-tubulin. The similarities between basal body assembly in Naegleria and centriole assembly in animals indicate that mechanisms of assembly, as well as structure, have been conserved throughout eukaryotic evolution.The beautiful and enigmatic pinwheel structures of centrioles and basal bodies have captured the imaginations of cell biologists for over a century. These small (∼1-μm) organelles are composed largely of a cylinder of nine microtubule triplets (11). The surrounding amorphous material harbors the microtubule-organizing activities of the centrosome, placing centrioles at the hub of the microtubule cytoskeleton. Metazoan centrosomes define mitotic spindle poles, and their centrioles are called basal bodies when used to form cilia (29). Moreover, in 1900 Meeves showed in a series of classical experiments that centrioles and basal bodies are interconvertible structures (34). Centrioles must replicate exactly once per cell cycle, as duplication errors can lead to problems with chromosome segregation and cell morphology (17).Virtually all animal cells have a pair of centrosomal centrioles that duplicate via “templated” assembly, with the new centriole developing perpendicular and attached to a preexisting centriole (4). Centrioles can also be formed “de novo” in cytosol devoid of preexisting centrioles and basal bodies (20). In addition to many in vivo examples (20), terminally differentiated fibroblasts held in S phase can assemble centrioles de novo after removal of preexisting centrioles by laser microsurgery (15).The amoeboflagellate Naegleria gruberi grows as an amoeba that completely lacks a cytoplasmic microtubule cytoskeleton. However, when exposed to stressors such as temperature, osmotic, or pH changes, Naegleria rapidly differentiates into a flagellate, forming a complete cytoplasmic cytoskeleton from scratch, including two basal bodies and flagella (8). This differentiation occurs synchronously, with approximately 90% of cells growing visible flagella in a 15-min window (T50 = 65 min after initiation of differentiation). As part of this differentiation, Naegleria has been shown to assemble the pinwheel structure of the basal bodies de novo, about 10 min before flagella are seen (11).Two centrosomal proteins that have been studied during Naegleria differentiation are centrin and γ-tubulin. Centrin is a calcium-binding phosphoprotein that is an integral component of the wall and lumen of basal bodies and of the pericentriolar lattice in many organisms (4, 19). During differentiation, Naegleria induces synthesis of centrin protein, which then localizes specifically to basal body structures throughout differentiation (18). γ-Tubulin is a general microtubule nucleation factor that localizes to microtubule-organizing centers (MTOCs) of many types. Surprisingly, Naegleria''s γ-tubulin homolog has been reported to localize to basal body precursor complexes and then move to the other end of the cell before disappearing completely (32).A third protein that has come under recent scrutiny for its role in centriole duplication is SAS-6, a functionally conserved coiled-coil protein required for the formation of diverse basal body precursor structures (7, 21,–23, 31). In Caenorhabditis elegans and Drosophila melanogaster, SAS-6 is recruited at S phase to form the “central tube,” a cylindrical basal body precursor that lacks microtubules (22, 23). SAS-6 is also required for the formation of the flat ring or cartwheel with nine radiating spokes, which is the first structure to be formed in the Chlamydomonas basal body (21).To determine if Naegleria is likely to have typical basal body components, we identified conserved basal body genes in the Naegleria genome. We also made antibodies to and localized Naegleria''s homologs of SAS-6 and γ-tubulin. Finally, we have determined the order of expression and incorporation of these proteins, as well as centrin, during Naegleria de novo basal body assembly. 相似文献
5.
Altered nuclear distribution of recombination protein RAD51 in maize mutants suggests the involvement of RAD51 in meiotic homology recognition 总被引:12,自引:0,他引:12 下载免费PDF全文
The recombination protein RAD51 is a component of the meiotic recombination pathway and has been proposed to play a role in the homology search, a process by which homologous chromosomes find each other before they pair in the prophase of meiosis. To study the relationship between recombination and chromosome pairing, we examined the distribution of RAD51 foci on meiotic chromosomes in maize mutants with defects in chromosome pairing. The patterns of RAD51 distribution showed dramatic variation among the meiotic mutants. The mutants generally exhibited significant decreases in the number of RAD51 foci at zygotene, corresponding to the degree of their pairing defects. These results provide evidence for a key role of RAD51 structures in the homology search. 相似文献
6.
7.
8.
Meiosis is a specialized type of cell division leading to the production of gametes. During meiotic prophase I, homologous chromosomes interact with each other and form bivalents (pairs of homologous chromosomes). Three major meiotic processes--chromosome pairing, synapsis and recombination--are involved in the formation of bivalents. Many recent reports have uncovered complex networks of interactions between these processes. Chromosome pairing is largely dependent on the initiation and progression of recombination in fungi, mammals and plants, but not in Caenorhabditis elegans or Drosophila. Synapsis and recombination are also tightly linked. Understanding the coordination between chromosome pairing, synapsis and recombination lends insight into many poorly explained aspects of meiosis, such as the nature of chromosome homology recognition. 相似文献
9.
10.
Telomeres Cluster De Novo before the Initiation of Synapsis: A Three-dimensional Spatial Analysis of Telomere Positions before and during Meiotic Prophase 总被引:14,自引:1,他引:13 下载免费PDF全文
Hank W. Bass Wallace F. Marshall John W. Sedat David A. Agard W. Zacheus Cande 《The Journal of cell biology》1997,137(1):5-18
We have analyzed the progressive changes in the spatial distribution of telomeres during meiosis using three-dimensional, high resolution fluorescence microscopy. Fixed meiotic cells of maize (Zea mays L.) were subjected to in situ hybridization under conditions that preserved chromosome structure, allowing identification of stage-dependent changes in telomere arrangements. We found that nuclei at the last somatic prophase before meiosis exhibit a nonrandom, polarized chromosome organization resulting in a loose grouping of telomeres. Quantitative measurements on the spatial arrangements of telomeres revealed that, as cells passed through premeiotic interphase and into leptotene, there was an increase in the frequency of large telomere-to-telomere distances and a decrease in the bias toward peripheral localization of telomeres. By leptotene, there was no obvious evidence of telomere grouping, and the large, singular nucleolus was internally located, nearly concentric with the nucleus. At the end of leptotene, telomeres clustered de novo at the nuclear periphery, coincident with a displacement of the nucleolus to one side. The telomere cluster persisted throughout zygotene and into early pachytene. The nucleolus was adjacent to the cluster at zygotene. At the pachytene stage, telomeres rearranged again by dispersing throughout the nuclear periphery. The stagedependent changes in telomere arrangements are suggestive of specific, active telomere-associated motility processes with meiotic functions. Thus, the formation of the cluster itself is an early event in the nuclear reorganizations associated with meiosis and may reflect a control point in the initiation of synapsis or crossing over. 相似文献