首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1276篇
  免费   84篇
  1360篇
  2022年   18篇
  2021年   17篇
  2020年   8篇
  2019年   14篇
  2018年   20篇
  2017年   30篇
  2016年   39篇
  2015年   45篇
  2014年   60篇
  2013年   76篇
  2012年   109篇
  2011年   102篇
  2010年   55篇
  2009年   65篇
  2008年   82篇
  2007年   94篇
  2006年   87篇
  2005年   81篇
  2004年   63篇
  2003年   69篇
  2002年   54篇
  2001年   6篇
  2000年   9篇
  1999年   12篇
  1998年   18篇
  1997年   21篇
  1996年   10篇
  1995年   14篇
  1994年   13篇
  1993年   3篇
  1992年   8篇
  1991年   7篇
  1990年   3篇
  1989年   5篇
  1988年   5篇
  1987年   2篇
  1986年   4篇
  1985年   2篇
  1984年   3篇
  1983年   3篇
  1982年   4篇
  1981年   1篇
  1980年   5篇
  1979年   4篇
  1978年   3篇
  1977年   1篇
  1976年   2篇
  1975年   1篇
  1970年   1篇
  1968年   2篇
排序方式: 共有1360条查询结果,搜索用时 19 毫秒
1.
To sequence a DNA segment inserted into a cosmid vector underthe directed sequencing strategy, we established a simple andrapid method for generating nested deletions which uses thein vitro packaging system of bacteriophage T3 DNA. The principleis based on the previous finding that this system can translocateany linear double-stranded DNA up to 40 kb into the phage capsidin a time-dependent manner and the encapsulated DNA becomesDNase-resistant. For this purpose, we constructed a cosmid vectorthat carries two different antibiotic selection markers at bothsides of the multiple cloning site, and after insertion of aDNA segment, the clone was linearized by -terminase at the cossite. After the packaging reaction in vitro followed by DNasetreatment, the encapsulated DNA was introduced into Escherichiacoli cells to give clones with unidirectional deletions by differentialantibiotic selection. Restriction and sequence analyses of deletionclones demonstrated that an ordered set of clones with nesteddeletions, ranging from less than 1 kb to 25 kb, was createdfrom either the end of the DNA segment. Thus, nested deletionclones that cover the entire region of a 40-kb cosmid insertcan be obtained by a single packaging reaction, and its restrictionmap can be simultaneously obtained.  相似文献   
2.
When rat hepatoma cells (R-Y121B) were incubated with insulin at 37 degrees C, concanavalin A increased insulin internalization into cells. When R-Y121B cells were first incubated with labeled insulin at 4 degrees C then with concanavalin A at various concentrations at 37 degrees C, the total cellular radioactivity was much higher at high lectin concentrations than at low lectin concentrations. This increase was not only due to an increase in insulin internalization into cells but also to an increase in insulin binding to cell surfaces. Concanavalin A can trap insulin on the insulin receptors - a "trapping" effect. It has been concluded that insulin and concanavalin A binding sites are very close to each other on the insulin receptors.  相似文献   
3.
Bioconversion experiments of various mono- or di-substituted naphthalenes such as dimethylnaphthalenes were carried out using the cells of Escherichia coli that expressed aromatic dihydroxylating dioxygenase genes (phnA1A2A3A4 and phdABCD) from polycyclic aromatic hydrocarbon-utilizing marine bacteria, Nocardioides sp. KP7 and Cycloclasticus sp. A5, respectively. We found that the former dioxygenase PhnA1A2A3A4 had broad substrate preference for these compounds and often was able to hydroxylate their methyl groups. Specifically, 1,4-dimethylnaphthalene was predominantly bioconverted into 1,4-dihydroxymethylnaphthalene.  相似文献   
4.

Aims

Abdominal aortic aneurysms (AAAs) are characterized by chronic inflammation, which contributes to the pathological remodeling of the extracellular matrix. Although mechanical stress has been suggested to promote inflammation in AAA, the molecular mechanism remains uncertain. Periostin is a matricellular protein known to respond to mechanical strain. The aim of this study was to elucidate the role of periostin in mechanotransduction in the pathogenesis of AAA.

Methods and Results

We found significant increases in periostin protein levels in the walls of human AAA specimens. Tissue localization of periostin was associated with inflammatory cell infiltration and destruction of elastic fibers. We examined whether mechanical strain could stimulate periostin expression in cultured rat vascular smooth muscle cells. Cells subjected to 20% uniaxial cyclic strains showed significant increases in periostin protein expression, focal adhesion kinase (FAK) activation, and secretions of monocyte chemoattractant protein-1 (MCP-1) and the active form of matrix metalloproteinase (MMP)-2. These changes were largely abolished by a periostin-neutralizing antibody and by the FAK inhibitor, PF573228. Interestingly, inhibition of either periostin or FAK caused suppression of the other, indicating a positive feedback loop. In human AAA tissues in ex vivo culture, MCP-1 secretion was dramatically suppressed by PF573228. Moreover, in vivo, periaortic application of recombinant periostin in mice led to FAK activation and MCP-1 upregulation in the aortic walls, which resulted in marked cellular infiltration.

Conclusion

Our findings indicated that periostin plays an important role in mechanotransduction that maintains inflammation via FAK activation in AAA.  相似文献   
5.
Excitotoxicity is involved in neurodegenerative conditions. We investigated the pathological significance of a surge in prostaglandin production immediately after kainic acid (KA) administration [initial phase], followed by a sustained moderate elevation in prostaglandin level [late phase] in the hippocampus of juvenile rats. Numerous pyknotic hippocampal neurons were observed 72 h after KA treatment; this number remained elevated on days 10 and 30. Gross hippocampal atrophy was observed on days 10 and 30. Pre-treatment with indomethacin ameliorated neuronal death on days 10 and 30, and prevented hippocampal atrophy on day 30. Microglial response was moderated by the indomethacin pre-treatment. Blockade of only late-phase prostaglandin production by post-treatment with indomethacin ameliorated neuronal death on day 30. These findings suggest a role for initial-phase prostaglandin production in chronic progressive neuronal death, which is exacerbated by late-phase prostaglandin production. Blockade of prostaglandin production has therapeutic implications in preventing long-term neurological sequelae following excitotoxic brain damage.  相似文献   
6.
Magic-angle-spinning solid-state 13C NMR spectroscopy is useful for structural analysis of non-crystalline proteins. However, the signal assignments and structural analysis are often hampered by the signal overlaps primarily due to minor structural heterogeneities, especially for uniformly-13C,15N labeled samples. To overcome this problem, we present a method for assigning 13C chemical shifts and secondary structures from unresolved two-dimensional 13C–13C MAS NMR spectra by spectral fitting, named reconstruction of spectra using protein local structures (RESPLS). The spectral fitting was conducted using databases of protein fragmented structures related to 13Cα, 13Cβ, and 13C′ chemical shifts and cross-peak intensities. The experimental 13C–13C inter- and intra-residue correlation spectra of uniformly isotope-labeled ubiquitin in the lyophilized state had a few broad peaks. The fitting analysis for these spectra provided sequence-specific Cα, Cβ, and C′ chemical shifts with an accuracy of about 1.5 ppm, which enabled the assignment of the secondary structures with an accuracy of 79 %. The structural heterogeneity of the lyophilized ubiquitin is revealed from the results. Test of RESPLS analysis for simulated spectra of five different types of proteins indicated that the method allowed the secondary structure determination with accuracy of about 80 % for the 50–200 residue proteins. These results demonstrate that the RESPLS approach expands the applicability of the NMR to non-crystalline proteins exhibiting unresolved 13C NMR spectra, such as lyophilized proteins, amyloids, membrane proteins and proteins in living cells.  相似文献   
7.
8.
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号