全文获取类型
收费全文 | 2416篇 |
免费 | 274篇 |
国内免费 | 696篇 |
专业分类
3386篇 |
出版年
2024年 | 9篇 |
2023年 | 53篇 |
2022年 | 92篇 |
2021年 | 121篇 |
2020年 | 105篇 |
2019年 | 150篇 |
2018年 | 126篇 |
2017年 | 76篇 |
2016年 | 115篇 |
2015年 | 156篇 |
2014年 | 216篇 |
2013年 | 205篇 |
2012年 | 254篇 |
2011年 | 225篇 |
2010年 | 197篇 |
2009年 | 179篇 |
2008年 | 176篇 |
2007年 | 141篇 |
2006年 | 149篇 |
2005年 | 132篇 |
2004年 | 92篇 |
2003年 | 87篇 |
2002年 | 83篇 |
2001年 | 56篇 |
2000年 | 38篇 |
1999年 | 29篇 |
1998年 | 26篇 |
1997年 | 14篇 |
1996年 | 14篇 |
1995年 | 9篇 |
1994年 | 6篇 |
1993年 | 3篇 |
1992年 | 6篇 |
1991年 | 5篇 |
1989年 | 3篇 |
1988年 | 4篇 |
1987年 | 5篇 |
1986年 | 3篇 |
1984年 | 2篇 |
1983年 | 5篇 |
1982年 | 3篇 |
1981年 | 3篇 |
1979年 | 1篇 |
1978年 | 2篇 |
1975年 | 2篇 |
1974年 | 1篇 |
1973年 | 2篇 |
1961年 | 1篇 |
1953年 | 1篇 |
1950年 | 1篇 |
排序方式: 共有3386条查询结果,搜索用时 30 毫秒
1.
植物生物反应器是一种新兴的重组蛋白表达系统,是分子农业的核心内容之一。本研究在本氏烟草(Nicotiana benthamiana)中表达了抗八肽(DYKDDDDK, FLAG)标签抗体,并对其进行纯化与鉴定。通过多次免疫小鼠获得高效价抗FLAG抗体并测出其编码序列,然后亚克隆至植物DNA病毒表达载体,最后通过农杆菌介导转染烟草叶片。经Western blotting检测了转染后2−9 d抗体的表达情况:3 d后FLAG抗体开始在烟草叶片中表达,5 d后表达量达到峰值,每千克鲜叶估计可表达66 mg FLAG抗体。抗体经过分离纯化后浓缩为1 mg/mL,按1:10 000稀释仍可识别1 ng/mL的抗原,表明植物生产的FLAG抗体具有高亲和力。植物生物反应器可用于生产高亲和力抗体,并具有简易、成本低和生产周期短等特点,具有很高的应用价值。 相似文献
2.
3.
大中型食肉动物肇事事件导致人类与野生动物关系恶化,给生物多样性保护工作带来巨大的挑战。若尔盖湿地是我国三大湿地之一,湿地、草原分布广泛,生物多样性丰富,畜牧业发达,但近年来狼(Canis lupus)捕杀牲畜的肇事事件时有发生。为了解若尔盖野生狼肇事件的空间分布以及牧民对人-狼冲突管理的看法,本研究于2022年对若尔盖县13个乡镇83个行政村进行走访调查。结果表明:(1)多数受访者(66.0%)认为在过去5年内,若尔盖县野生狼数量有所增加;(2)狼肇事事件具有明显的空间分异性,最严重的是包座乡。包座乡临近山区,该区域牧场面积广阔、牧民饲养牲畜数量多等原因导致该镇发生狼肇事事件较多;(3)对于狼肇事,绝大多数牧民(85.0%)更希望采取经济补偿或者驱赶措施,只有少数牧民(9.4%)希望采取捕杀的措施;(4)影响牧民对狼肇事管理措施的偏好因子中,受教育程度、年龄、民族以及被杀牲畜数量有显著影响。建议加强狼种群监测管理,采取措施减少狼捕杀牲畜,优化补偿机制,缓解当地牧民与狼之间的矛盾。本研究为当前若尔盖县野生动物保护和管理决策提供了依据,对其他地区大型食肉动物与当地居民冲突管理具有借鉴意义。 相似文献
4.
5.
6.
5-methylcytosine (5-mC) constitutes ~2-8% of the total cytosines in human genomic DNA and impacts a broad range of biological functions, including gene expression, maintenance of genome integrity, parental imprinting, X-chromosome inactivation, regulation of development, aging, and cancer1. Recently, the presence of an oxidized 5-mC, 5-hydroxymethylcytosine (5-hmC), was discovered in mammalian cells, in particular in embryonic stem (ES) cells and neuronal cells2-4. 5-hmC is generated by oxidation of 5-mC catalyzed by TET family iron (II)/α-ketoglutarate-dependent dioxygenases2, 3. 5-hmC is proposed to be involved in the maintenance of embryonic stem (mES) cell, normal hematopoiesis and malignancies, and zygote development2, 5-10. To better understand the function of 5-hmC, a reliable and straightforward sequencing system is essential. Traditional bisulfite sequencing cannot distinguish 5-hmC from 5-mC11. To unravel the biology of 5-hmC, we have developed a highly efficient and selective chemical approach to label and capture 5-hmC, taking advantage of a bacteriophage enzyme that adds a glucose moiety to 5-hmC specifically12.Here we describe a straightforward two-step procedure for selective chemical labeling of 5-hmC. In the first labeling step, 5-hmC in genomic DNA is labeled with a 6-azide-glucose catalyzed by β-GT, a glucosyltransferase from T4 bacteriophage, in a way that transfers the 6-azide-glucose to 5-hmC from the modified cofactor, UDP-6-N3-Glc (6-N3UDPG). In the second step, biotinylation, a disulfide biotin linker is attached to the azide group by click chemistry. Both steps are highly specific and efficient, leading to complete labeling regardless of the abundance of 5-hmC in genomic regions and giving extremely low background. Following biotinylation of 5-hmC, the 5-hmC-containing DNA fragments are then selectively captured using streptavidin beads in a density-independent manner. The resulting 5-hmC-enriched DNA fragments could be used for downstream analyses, including next-generation sequencing.Our selective labeling and capture protocol confers high sensitivity, applicable to any source of genomic DNA with variable/diverse 5-hmC abundances. Although the main purpose of this protocol is its downstream application (i.e., next-generation sequencing to map out the 5-hmC distribution in genome), it is compatible with single-molecule, real-time SMRT (DNA) sequencing, which is capable of delivering single-base resolution sequencing of 5-hmC. 相似文献
7.
目的:探讨爱贝芙在修复面部凹陷中的疗效.方法:根据凹陷程度估计爱贝芙用量,然后在面部凹陷部位的真皮网状层或真皮与皮下脂肪交界平面注射爱贝芙,轻压、按摩平整,而后局部用胶布固定三天.结果:爱贝芙能明显修复眼睑沟、鼻梁、鼻翼塌陷及先天的软组织凹陷,患者满意,对凹陷瘢痕虽能矫正凹陷,但无法改变瘢痕已有的色素改变,对唇的效果较差.结论:爱贝芙可以用来修复面部大部分软组织凹陷,且痛苦小、恢复快. 相似文献
8.
9.
Some β-d-hexopyranosides of 1-thio-d-glucose, 2-acetamido-2-deoxy-1-thio-d-glucose, and 1-thio-d-galactose were examined by laser-Raman spectroscopy. An anomeric CH bending vibration was found at 891 ± 7 cm-1 for all compounds investigated; thus, the anomers of these sugars can be differentiated by Raman spectroscopy. The N-acetyl group and carboxyl group can also be detected by Raman spectroscopy. Unlike protein samples, the carbohydrates in aqueous solution yield less useful information from Raman spectra than in the solid state; this is due to the extensive overlapping of carbohydrate OH bands with water OH bands. 相似文献
10.
Tai‐Wen Lin Chi‐Chih Chen Shu‐Mei Wu Yu‐Ching Chang Yi‐Chuan Li Yu‐Wang Su Chwan‐Deng Hsiao Hsin‐Yang Chang 《The Plant journal : for cell and molecular biology》2019,99(1):128-143
In mammals and yeast, tail‐anchored (TA) membrane proteins destined for the post‐translational pathway are safely delivered to the endoplasmic reticulum (ER) membrane by a well‐known targeting factor, TRC40/Get3. In contrast, the underlying mechanism for translocation of TA proteins in plants remains obscure. How this unique eukaryotic membrane‐trafficking system correctly distinguishes different subsets of TA proteins destined for various organelles, including mitochondria, chloroplasts and the ER, is a key question of long standing. Here, we present crystal structures of algal ArsA1 (the Get3 homolog) in a distinct nucleotide‐free open state and bound to adenylyl‐imidodiphosphate. This approximately 80‐kDa protein possesses a monomeric architecture, with two ATPase domains in a single polypeptide chain. It is capable of binding chloroplast (TOC34 and TOC159) and mitochondrial (TOM7) TA proteins based on features of its transmembrane domain as well as the regions immediately before and after the transmembrane domain. Several helices located above the TA‐binding groove comprise the interlocking hook‐like motif implicated by mutational analyses in TA substrate recognition. Our data provide insights into the molecular basis of the highly specific selectivity of interactions of algal ArsA1 with the correct sets of TA substrates before membrane targeting in plant cells. 相似文献