首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
  2012年   1篇
  2003年   1篇
  2002年   1篇
  1998年   1篇
排序方式: 共有4条查询结果,搜索用时 140 毫秒
1
1.
2.
3.
We previously reported the small organic N-type calcium channel blocker NP078585 that while efficacious in animal models for pain, exhibited modest L-type calcium channel selectivity and substantial off-target inhibition against the hERG potassium channel. Structure-activity studies to optimize NP078585 preclinical properties resulted in compound 16, which maintained high potency for N-type calcium channel blockade, and possessed excellent selectivity over the hERG (~120-fold) and L-type (~3600-fold) channels. Compound 16 shows significant anti-hyperalgesic activity in the spinal nerve ligation model of neuropathic pain and is also efficacious in the rat formalin model of inflammatory pain.  相似文献   
4.
Alveolar epithelial cells were isolated from adultSprague-Dawley rats and grown to confluence on membrane filters. Mostof the basal short-circuit current(Isc; 60%) wasinhibited by amiloride (IC50 0.96 µM) or benzamil (IC50 0.5 µM).Basolateral addition of terbutaline (2 µM) produced a rapid decreasein Isc, followed by a slow recovery back to its initial amplitude. WhenCl was replaced withmethanesulfonic acid, the basalIsc was reduced and the response to terbutaline was inhibited. In permeabilized monolayer experiments, both terbutaline and amiloride produced sustained decreases in current. The current-voltage relationship of the terbutaline-sensitive current had a reversal potential of28 mV. Increasing Cl concentration in thebasolateral solution shifted the reversal potential to more depolarizedvoltages. These results were consistent with the existence of aterbutaline-activated Cl conductance in the apicalmembrane. Terbutaline did not increase the amiloride-sensitiveNa+ conductance. We conclude that -adrenergicstimulation of adult alveolar epithelial cells results in an increasein apical Cl permeability and thatamiloride-sensitive Na+ channels are not directly affectedby this stimulation.

  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号