首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2441篇
  免费   183篇
  国内免费   151篇
  2775篇
  2024年   6篇
  2023年   25篇
  2022年   74篇
  2021年   131篇
  2020年   92篇
  2019年   100篇
  2018年   77篇
  2017年   70篇
  2016年   115篇
  2015年   147篇
  2014年   164篇
  2013年   199篇
  2012年   212篇
  2011年   195篇
  2010年   123篇
  2009年   100篇
  2008年   118篇
  2007年   112篇
  2006年   92篇
  2005年   76篇
  2004年   64篇
  2003年   57篇
  2002年   61篇
  2001年   40篇
  2000年   37篇
  1999年   30篇
  1998年   14篇
  1997年   16篇
  1996年   18篇
  1995年   18篇
  1994年   15篇
  1993年   14篇
  1992年   24篇
  1991年   19篇
  1990年   15篇
  1989年   11篇
  1988年   16篇
  1987年   13篇
  1986年   13篇
  1985年   6篇
  1984年   4篇
  1983年   5篇
  1982年   4篇
  1980年   5篇
  1975年   4篇
  1973年   4篇
  1971年   3篇
  1969年   3篇
  1968年   2篇
  1967年   2篇
排序方式: 共有2775条查询结果,搜索用时 15 毫秒
1.
The synthesis of laminarahexaose is described. NMR studies of several of the intermediates leading to the β-1,3-glucan show anomalously small coupling constants for some of the C-1 hydrogens. An X-ray structure for the protected hexasaccharide shows that the small coupling constants are due to some of the glucopyranose rings adopting a twist-boat conformation. The X-ray studies also explain other unexpected NMR observations.  相似文献   
2.
The coral skeleton harbours a diverse community of bacteria and microeukaryotes exposed to light, O2 and pH gradients, but how such physicochemical gradients affect the coral skeleton microbiome remains unclear. In this study, we employed chemical imaging of O2 and pH, hyperspectral reflectance imaging and spatially resolved taxonomic and inferred functional microbiome characterization to explore links between the skeleton microenvironment and microbiome in the reef-building corals Porites lutea and Paragoniastrea benhami. The physicochemical environment was more stable in the deep skeleton, and the diversity and evenness of the bacterial community increased with skeletal depth, suggesting that the microbiome was stratified along the physicochemical gradients. The bulk of the coral skeleton was in a low O2 habitat, whereas pH varied from pH 6–9 with depth. Physicochemical gradients of O2 and pH of the coral skeleton explained the β-diversity of the bacterial communities, and skeletal layers that showed O2 peaks had a higher relative abundance of endolithic algae, reflecting a link between the abiotic environment and the microbiome composition. Our study links the physicochemical, microbial and functional landscapes of the coral skeleton and provides new insights into the involvement of skeletal microbes in the coral holobiont metabolism.  相似文献   
3.
We developed a system to examine forward mutations that occurred in the rpsL gene of Escherichia coli placed on a multicopy plasmid. Using this system we determined the mutational specificity for a dnaE173 mutator strain in which the editing function of DNA polymerase III is impeded. The frequency of rpsL- mutations increased 32,000-fold, due to the dnaE173 mutator, and 87 independent rpsL- mutations in the mutator strain were analyzed by DNA sequencing, together with 100 mutants recovered from dnaE+ strain, as the control. While half the number of mutations that occurred in the wild-type strain were caused by insertion elements, no such mutations were recovered from the mutator strain. A novel class of mutation, named "sequence substitution" was present in mutants raised in the dnaE173 strain; seven sequence substitutions induced in the mutator strain occurred at six sites, and all were located in quasipalindromic sequences, carrying the GTG or CAC sequence at one or both endpoints. While other types of mutation were found in both strains, single-base frameshifts were the most frequent events in the mutator strain. Thus, the mutator effect on this class of mutation was 175,000-fold. A total of 95% of the single-base frameshifts in the mutator strain were additions, most of which occurred at runs of A or C bases so as to increase the number of identical residues. Base substitutions, the frequency of which was enhanced 25,000-fold by the mutator effect, occurred primarily at several hotspots in the mutator strain, whereas those induced in the wild-type strain were more randomly distributed throughout the rpsL sequence. The dnaE173 mutator also increased the frequency of duplications 28,000-fold. Of the three duplications recovered from the mutator strain, one was a simple duplication, the region of which was flanked by direct repeats. The other duplications were complex, one half part of which was in the inverted orientation of a region containing two sets of inverted repeats. The same duplications were also recovered from the wild-type strain. The present data suggest that dnaE173 is a novel class of mutator that sharply induces sequence-directed mutagenesis, yielding high frequencies of single base frameshifts, duplications with inversions, sequence substitutions and base substitutions at hotspots.  相似文献   
4.
A subsystem impactor test for pedestrian lower limb injury evaluation has been brought in China New Car Assessment Protocol(CNCAP).Concerning large anthropometr...  相似文献   
5.
Obesity is a world‐wide problem, especially the child obesity, with the complication of various metabolic diseases. Child obesity can be developed as early as the age between 2 and 6. The expansion of fat mass in child age includes both hyperplasia and hypertrophy of adipose tissue, suggesting the importance of proliferation and adipogenesis of preadipocytes. The changed composition of gut microbiota is associated with obesity, revealing the roles of lipopolysaccharide (LPS) on manipulating adipose tissue development. Studies suggest that LPS enters the circulation and acts as a pro‐inflammatory regulator to facilitate pathologies. Nevertheless, the underlying mechanisms behind LPS‐modulated obesity are yet clearly elucidated. This study showed that LPS enhanced the expression of cyclooxygenase‐2 (COX‐2), an inflammatory regulator of obesity, in preadipocytes. Pretreating preadipocytes with the scavenger of reactive oxygen species (ROS) or the inhibitors of NADPH oxidase or p42/p44 MAPK markedly decreased LPS‐stimulated gene expression of COX‐2 together with the phosphorylation of p47phox and p42/p44 MAPK, separately. LPS activated p42/p44 MAPK via NADPH oxidase‐dependent ROS accumulation in preadipocytes. Reduction of intracellular ROS or attenuation of p42/p44 MAPK activation both reduced LPS‐mediated COX‐2 expression and preadipocyte proliferation. Moreover, LPS‐induced preadipocyte proliferation and adipogenesis were abolished by the inhibition of COX‐2 or PEG2 receptors. Taken together, our results suggested that LPS enhanced the proliferation and adipogenesis of preadipocytes via NADPH oxidase/ROS/p42/p44 MAPK‐dependent COX‐2 expression.  相似文献   
6.
Age‐related memory impairment (AMI) is a common phenomenon across species. Vulnerability to interfering stimuli has been proposed to be an important cause of AMI. However, the molecular mechanisms underlying this vulnerability‐related AMI remain unknown. Here we show that learning‐activated MAPK signals are gradually lost with age, leading to vulnerability‐related AMI in Drosophila. Young flies (2‐ or 3‐day‐old) exhibited a significant increase in phosphorylated MAPK levels within 15 min after learning, whereas aged flies (25‐day‐old) did not. Compared to 3‐day‐old flies, significant 1 h memory impairments were observed in 15‐, 20‐, and 30‐day‐old flies, but not in 10‐day‐old flies. However, with post‐learning interfering stimuli such as cooling or electric stimuli, 10‐day‐old flies had worse memory performance at 1 h than 3‐day‐old flies, showing a premature AMI phenomenon. Increasing learning‐activated MAPK signals through acute transgene expression in mushroom body (MB) neurons restored physiological trace of 1 h memory in a pair of MB output neurons in aged flies. Decreasing such signals in young flies mimicked the impairment of 1 h memory trace in aged flies. Restoring learning‐activated MAPK signals in MB neurons in aged flies significantly suppressed AMI even with interfering stimuli. Thus, our data suggest that age‐related loss of learning‐activated neuronal MAPK signals causes memory vulnerability to interfering stimuli, thereby leading to AMI.  相似文献   
7.
Actinomycetes are known for their secondary metabolites, which have been successfully used as drugs in human and veterinary medicines. However, information on the distribution of this group of Gram-positive bacteria in diverse ecosystems and a comprehension of their activities in ecosystem processes are still scarce. We have developed a 16S rRNA-based taxonomic microarray that targets key actinomycetes at the genus level. In total, 113 actinomycete 16S rRNA probes, corresponding to 55 of the 202 described genera, were designed. The microarray accuracy was evaluated by comparing signal intensities with probe/target-weighted mismatch values and the Gibbs energy of the probe/target duplex formation by hybridizing 17 non-actinomycete and 29 actinomycete strains/clones with the probe set. The validation proved that the probe set was specific, with only 1.3% of false results. The incomplete coverage of actinomycetes by a genus-specific probe was caused by the limited number of 16S rRNA gene sequences in databases or insufficient 16S rRNA gene polymorphism. The microarray enabled discrimination between actinomycete communities from three forest soil samples collected at one site. Cloning and sequencing of 16S rRNA genes from one of the soil samples confirmed the microarray results. We propose that this newly constructed microarray will be a valuable tool for genus-level comparisons of actinomycete communities in various ecological conditions.  相似文献   
8.
MicroRNA-21 targets tumor suppressor genes in invasion and metastasis   总被引:2,自引:0,他引:2  
Zhu S  Wu H  Wu F  Nie D  Sheng S  Mo YY 《Cell research》2008,18(3):350-359
  相似文献   
9.
10.
Vascular smooth muscle cell (VSMC) proliferation is a hallmark of neointimal hyperplasia (NIH) in atherosclerosis and restenosis post-balloon angioplasty and stent insertion. Although numerous cytotoxic and cytostatic therapeutics have been developed to reduce NIH, it is improbable that a multifactorial disease can be successfully treated by focusing on a preconceived hypothesis. We, therefore, aimed to identify key molecules involved in NIH via a hypothesis-free approach. We analyzed four datasets (GSE28829, GSE43292, GSE100927, and GSE120521), evaluated differentially expressed genes (DEGs) in wire-injured femoral arteries of mice, and determined their association with VSMC proliferation in vitro. Moreover, we performed RNA sequencing on platelet-derived growth factor (PDGF)-stimulated human VSMCs (hVSMCs) post-phosphoenolpyruvate carboxykinase 2 (PCK2) knockdown and investigated pathways associated with PCK2. Finally, we assessed NIH formation in Pck2 knockout (KO) mice by wire injury and identified PCK2 expression in human femoral artery atheroma. Among six DEGs, only PCK2 and RGS1 showed identical expression patterns between wire-injured femoral arteries of mice and gene expression datasets. PDGF-induced VSMC proliferation was attenuated when hVSMCs were transfected with PCK2 siRNA. RNA sequencing of PCK2 siRNA-treated hVSMCs revealed the involvement of the Akt-FoxO-PCK2 pathway in VSMC proliferation via Akt2, Akt3, FoxO1, and FoxO3. Additionally, NIH was attenuated in the wire-injured femoral artery of Pck2-KO mice and PCK2 was expressed in human femoral atheroma. PCK2 regulates VSMC proliferation in response to vascular injury via the Akt-FoxO-PCK2 pathway. Targeting PCK2, a downstream signaling mediator of VSMC proliferation, may be a novel therapeutic approach to modulate VSMC proliferation in atherosclerosis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号