全文获取类型
收费全文 | 1128篇 |
免费 | 99篇 |
国内免费 | 1篇 |
专业分类
1228篇 |
出版年
2024年 | 2篇 |
2023年 | 6篇 |
2022年 | 16篇 |
2021年 | 42篇 |
2020年 | 15篇 |
2019年 | 22篇 |
2018年 | 29篇 |
2017年 | 28篇 |
2016年 | 52篇 |
2015年 | 82篇 |
2014年 | 83篇 |
2013年 | 84篇 |
2012年 | 132篇 |
2011年 | 105篇 |
2010年 | 69篇 |
2009年 | 48篇 |
2008年 | 67篇 |
2007年 | 59篇 |
2006年 | 54篇 |
2005年 | 37篇 |
2004年 | 51篇 |
2003年 | 38篇 |
2002年 | 32篇 |
2001年 | 6篇 |
2000年 | 2篇 |
1999年 | 9篇 |
1998年 | 8篇 |
1997年 | 5篇 |
1996年 | 2篇 |
1995年 | 2篇 |
1994年 | 6篇 |
1992年 | 1篇 |
1991年 | 3篇 |
1989年 | 2篇 |
1988年 | 1篇 |
1987年 | 3篇 |
1986年 | 1篇 |
1985年 | 1篇 |
1984年 | 1篇 |
1983年 | 1篇 |
1982年 | 3篇 |
1981年 | 5篇 |
1980年 | 1篇 |
1979年 | 1篇 |
1978年 | 2篇 |
1977年 | 2篇 |
1976年 | 2篇 |
1974年 | 1篇 |
1966年 | 2篇 |
1965年 | 1篇 |
排序方式: 共有1228条查询结果,搜索用时 15 毫秒
1.
I. J. Pickering Graham N. George Verena Van Fleet-Stalder Thomas G. Chasteen Roger C. Prince 《Journal of biological inorganic chemistry》1999,4(6):791-794
Received: 2 April 1999 / Accepted: 17 September 1999 相似文献
2.
3.
4.
Lorenz M Wessler S Follmann E Michaelis W Düsterhöft T Baumann G Stangl K Stangl V 《The Journal of biological chemistry》2004,279(7):6190-6195
Epidemiological studies suggest that tea catechins may reduce the risk of cardiovascular disease, but the mechanisms of benefit have not been determined. The objective of the present study was to investigate the effects of epigallocatechin-3-gallate (EGCG), the major constituent of green tea, on vasorelaxation and on eNOS expression and activity in endothelial cells. EGCG (1-50 microm) induced dose-dependent vasodilation in rat aortic rings. Vasodilation was abolished by pretreatment with Ng-nitro L-arginine methyl ester. In bovine aortic endothelial cells, EGCG increased endothelial nitric oxide (eNOS) activity dose-dependently after 15 min. Treatment with EGCG induced a sustained activation of Akt, ERK1/2, and eNOS Ser1179 phosphorylation. Inhibition of extracellular signal-regulated kinase (ERK)1/2 had no influence on eNOS activity or Ser1179 phosphorylation. Simultaneous treatment of cells with selective inhibitors for cAMP-dependent protein kinase (PKA) and Akt completely prevented the increase in eNOS activity by EGCG after 15 min, indicating that both kinases act in concert. Specific phosphatidylinositol-3-OH-kinase inhibitors yielded identical results. Akt inhibition prevented eNOS Ser1179 phosphorylation, whereas inhibition of PKA did not influence Akt and eNOS Ser1179 phosphorylation. Pretreatment of endothelial cells with EGCG for 4 h markedly enhanced the increase in eNOS activity stimulated by Ca-ionomycin, suggesting that Akt accounts for prolonged eNOS activation. Treatment of cells for 72 h with EGCG did not change eNOS protein levels. Our results indicate that EGCG-induced endothelium-dependent vasodilation is primarily based on rapid activation of eNOS by a phosphatidylinositol 3-kinase-, PKA-, and Akt-dependent increase in eNOS activity, independently of an altered eNOS protein content. 相似文献
5.
6.
Steffen Harzsch Carsten H. G. Müller Verena Rieger Yvan Perez Silvia Sintoni Christian Sardet Bill Hansson 《Zoomorphology》2009,128(1):53-73
The enigmatic arrow worms (Chaetognatha) are marine carnivores and among the most abundant planktonic organisms. Their phylogenetic
position has been heavily debated for a long time. Most recent molecular studies still provide a diverging picture and suggest
arrow worms to be some kind of basal protostomes. In an effort to understand the organization of the nervous system in this
clade for a broad comparison with other Metazoa we analysed the ultrastructure of the ventral nerve centre in Spadella cephaloptera by transmission electron microscopy. We were able to identify six different types of neurons in the bilateral somata clusters
by means of the cytoplasmic composition (regarding the structure of the neurite and soma including the shape and eu-/heterochromatin
ratio within the nucleus) as well as the size and position of these neurons. Furthermore, our study provides new insights
into the neuropil composition of the ventral nerve centre and several other fine structural features. Our second goal was
to examine if individually identifiable neurons are present in the ventral nerve centres of four chaetognath species, Sagitta setosa, Sagitta enflata, Pterosagitta draco, and Spadella cephaloptera. For that purpose, we processed whole mount specimens of these species for immunolocalization of RFamide-related neuropeptides
and analysed them with confocal laser-scanning microscopy. Our experiments provide evidence for the interspecific homology
of individual neurons in the ventral nerve centres of these four chaetognath species suggesting that the potential to generate
serially arranged neurons with individual identities is part of their ground pattern. 相似文献
7.
8.
Lena Hess Verena Moos Arnel A. Lauber Wolfgang Reiter Michael Schuster Natascha Hartl Daniel Lackner Thorina Boenke Anna Koren Paloma M. Guzzardo Brigitte Gundacker Anna Riegler Petra Vician Claudia Miccolo Susanna Leiter Mahesh B. Chandrasekharan Terezia Vcelkova Andrea Tanzer Jun Qi Jun James Bradner Gerald Brosch Markus Hartl Christoph Bock Tilmann Bürckstümmer Stefan Kubicek Susanna Chiocca Srividya Bhaskara Christian Seiser 《PLoS genetics》2022,18(8)
The class I histone deacetylases are essential regulators of cell fate decisions in health and disease. While pan- and class-specific HDAC inhibitors are available, these drugs do not allow a comprehensive understanding of individual HDAC function, or the therapeutic potential of isoform-specific targeting. To systematically compare the impact of individual catalytic functions of HDAC1, HDAC2 and HDAC3, we generated human HAP1 cell lines expressing catalytically inactive HDAC enzymes. Using this genetic toolbox we compare the effect of individual HDAC inhibition with the effects of class I specific inhibitors on cell viability, protein acetylation and gene expression. Individual inactivation of HDAC1 or HDAC2 has only mild effects on cell viability, while HDAC3 inactivation or loss results in DNA damage and apoptosis. Inactivation of HDAC1/HDAC2 led to increased acetylation of components of the COREST co-repressor complex, reduced deacetylase activity associated with this complex and derepression of neuronal genes. HDAC3 controls the acetylation of nuclear hormone receptor associated proteins and the expression of nuclear hormone receptor regulated genes. Acetylation of specific histone acetyltransferases and HDACs is sensitive to inactivation of HDAC1/HDAC2. Over a wide range of assays, we determined that in particular HDAC1 or HDAC2 catalytic inactivation mimics class I specific HDAC inhibitors. Importantly, we further demonstrate that catalytic inactivation of HDAC1 or HDAC2 sensitizes cells to specific cancer drugs. In summary, our systematic study revealed isoform-specific roles of HDAC1/2/3 catalytic functions. We suggest that targeted genetic inactivation of particular isoforms effectively mimics pharmacological HDAC inhibition allowing the identification of relevant HDACs as targets for therapeutic intervention. 相似文献
9.
Gottfried?WilharmEmail author Verena?Lehmann Wibke?Neumayer Janja?Tr?ek Jürgen?Heesemann 《BMC microbiology》2004,4(1):27
Background
Pathogenic Yersinia species (Y. enterocolitica, Y. pestis, Y. pseudotuberculosis) share a type three secretion system (TTSS) which allows translocation of effector proteins (called Yops) into host cells. It is believed that proteins are delivered through a hollow needle with an inner diameter of 2–3 nm. Thus transport seems to require substrates which are essentially unfolded. Recent work from different groups suggests that the Yersinia TTSS cannot accommodate substrates which are folded prior to secretion. It was suggested that folding is prevented either by co-translational secretion or by the assistance of specific Yop chaperones (called Sycs). 相似文献10.
Mutations in ACY1, the gene encoding aminoacylase 1, cause a novel inborn error of metabolism 下载免费PDF全文
Sass JO Mohr V Olbrich H Engelke U Horvath J Fliegauf M Loges NT Schweitzer-Krantz S Moebus R Weiler P Kispert A Superti-Furga A Wevers RA Omran H 《American journal of human genetics》2006,78(3):401-409
N-terminal acetylation of proteins is a widespread and highly conserved process. Aminoacylase 1 (ACY1; EC 3.5.14) is the most abundant of the aminoacylases, a class of enzymes involved in hydrolysis of N-acetylated proteins. Here, we present four children with genetic deficiency of ACY1. They were identified through organic acid analyses using gas chromatography-mass spectrometry, revealing increased urinary excretion of several N-acetylated amino acids, including the derivatives of methionine, glutamic acid, alanine, leucine, glycine, valine, and isoleucine. Nuclear magnetic resonance spectroscopy analysis of urine samples detected a distinct pattern of N-acetylated metabolites, consistent with ACY1 dysfunction. Functional analyses of patients' lymphoblasts demonstrated ACY1 deficiency. Mutation analysis uncovered recessive loss-of-function or missense ACY1 mutations in all four individuals affected. We conclude that ACY1 mutations in these children led to functional ACY1 deficiency and excretion of N-acetylated amino acids. Questions remain, however, as to the clinical significance of ACY1 deficiency. The ACY1-deficient individuals were ascertained through urine metabolic screening because of unspecific psychomotor delay (one subject), psychomotor delay with atrophy of the vermis and syringomyelia (one subject), marked muscular hypotonia (one subject), and follow-up for early treated biotinidase deficiency and normal clinical findings (one subject). Because ACY1 is evolutionarily conserved in fish, frog, mouse, and human and is expressed in the central nervous system (CNS) in human, a role in CNS function or development is conceivable but has yet to be demonstrated. Thus, at this point, we cannot state whether ACY1 deficiency has pathogenic significance with pleiotropic clinical expression or is simply a biochemical variant. Awareness of this new genetic entity may help both in delineating its clinical significance and in avoiding erroneous diagnoses. 相似文献