排序方式: 共有29条查询结果,搜索用时 0 毫秒
1.
Edgar Karofeld Leonas Jarašius Agnese Priede Jūratė Sendžikaitė 《Restoration Ecology》2017,25(2):293-300
In the Baltic countries (Estonia, Latvia, and Lithuania), mires directly affected by peat extraction cover almost 90,000 ha. Of these, over 26,200 ha have already been extracted and are abandoned. The main aim of this article is to give an overview of the extent of extracted peatlands in the Baltics, the legislative background around the land‐use options, and the directions of after‐use of peatlands since the middle of the 20th century. We also critically review results from restoration of abandoned extracted peatlands and assess whether they are on a trajectory toward reinitiation of paludification and functioning mire ecosystems. Almost all currently existing abandoned extracted peatlands in the Baltics were abandoned during and shortly after the Soviet period (1940–1991) without any restoration measures. The rest of the extracted areas were mostly afforested, converted into agricultural lands, berry plantations, or water bodies. The after‐use was mostly experimental, lacking systematic, proper assessment of outcome, cost and benefits, and side effects. The data are scarce but it could be estimated that only <10% (Estonia and Lithuania) and <20% (Latvia) of the total area of abandoned extracted peatlands were used for some purposes after peat extraction. Recently, several trials aimed at restoring the mire vegetation and ecosystem functions have been started in abandoned extracted peatlands in all three countries. In the coming years, the restoration of extracted peatlands in the Baltics will start on much bigger areas within different projects and initiatives cofinanced by the European Union. 相似文献
2.
Barzda V Gulbinas V Kananavicius R Cervinskas V van Amerongen H van Grondelle R Valkunas L 《Biophysical journal》2001,80(5):2409-2421
Singlet-singlet annihilation experiments have been performed on trimeric and aggregated light-harvesting complex II (LHCII) using picosecond spectroscopy to study spatial equilibration times in LHCII preparations, complementing the large amount of data on spectral equilibration available in literature. The annihilation kinetics for trimers can well be described by a statistical approach, and an annihilation rate of (24 ps)(-1) is obtained. In contrast, the annihilation kinetics for aggregates can well be described by a kinetic approach over many hundreds of picoseconds, and it is shown that there is no clear distinction between inter- and intratrimer transfer of excitation energy. With this approach, an annihilation rate of (16 ps)(-1) is obtained after normalization of the annihilation rate per trimer. It is shown that the spatial equilibration in trimeric LHCII between chlorophyll a molecules occurs on a time scale that is an order of magnitude longer than in Photosystem I-core, after correcting for the different number of chlorophyll a molecules in both systems. The slow transfer in LHCII is possibly an important factor in determining excitation trapping in Photosystem II, because it contributes significantly to the overall trapping time. 相似文献
3.
Bridging the gap between structural and lattice models: a parameterization of energy transfer and trapping in Photosystem I 下载免费PDF全文
In the absence of an accurate structural model, the excited state dynamics of energy-transferring systems are often modeled using lattice models. To demonstrate the validity and other potential merits of such an approach we present the results of the modeling of the energy transfer and trapping in Photosystem I based upon the 2.5 A structural model, and show that these results can be reproduced in terms of a lattice model with only a few parameters. It has recently been shown that at room temperature the dynamics of a hypothetical Photosystem I particle, not containing any red chlorophylls (chls), are characterized by a longest (trapping) lifetime of 18 ps. The structure-based modeling of the dynamics of this particle yields an almost linear relationship between the possible values of the intrinsic charge-separation time at P700, 1/gamma, and the average single-site lifetime in the antenna, tauss. Lattice-based modeling, using the approach of a perturbed two-level model, reproduces this linear relation between tauss and 1/gamma. Moreover, this approach results in a value of the (modified) structure-function corresponding to a structure exhibiting a mixture of the characteristics of both a square and a cubic lattice, consistent with the structural model. These findings demonstrate that the lattice model describes the dynamics of the system appropriately. In the lattice model, the total trapping time is the sum of the delivery time to the reaction center and the time needed to quench the excitation after delivery. For the literature value of tauss=150 fs, both these times contribute almost equally to the total trapping time of 18 ps, indicating that the system is neither transfer- nor trap-limited. The value of approximately 9 ps for the delivery time is basically equal to the excitation-transfer time from the bulk chls to the red chls in Synechococcus elongatus, indicating that energy transfer from the bulk to the reaction center and to the red chls are competing processes. These results are consistent with low-temperature time-resolved and steady-state fluorescence measurements. We conclude that lattice models can be used to describe the global energy-transfer properties in complex chromophore networks, with the advantage that such models deal with only a few global, intuitive parameters rather than the many microscopic parameters obtained in structure-based modeling. 相似文献
4.
Structural arrangement of pigment molecules of Photosystem I of photosynthetic cyanobacterium Synechococcus elongatus is used for theoretical modeling of the excitation energy spectrum. It is demonstrated that a straightforward application of the exciton theory with the assumption of the same molecular transition energy does not describe the red side of the absorption spectrum. Since the inhomogeneity in the molecular transition energies caused by a dispersive interaction with the molecular surrounding cannot be identified directly from the structural model, the evolutionary search procedure is used for fitting the low temperature absorption and circular dichroism spectra. As a result, one dimer, three trimers and one tetramer of chlorophyll molecules responsible for the red side of the absorption spectrum with their assignment to the spectroscopically established three bands at 708, 714 and 719 nm are determined. All of them are found to be situated not in the very close vicinity of the reaction center but are encircling it almost at the same distance. In order to explain the unusual broadening on the red side of the spectrum the exciton state mixing with the charge transfer (CT) states is considered. It is shown that two effects can be distinguished as caused by mixing of those states: (i) the oscillator strength borrowing by the CT state from the exciton transition and (ii) the borrowing of the high density of the CT state by the exciton state. The intermolecular vibrations between two counter-charged molecules determine the high density in the CT state. From the broad red absorption wing it is concluded that the CT state should be the lowest state in the complexes under consideration. Such mixing effect enables resolving the diversity in the molecular transition energies as determined by different theoretical approaches. 相似文献
5.
Urboniene V Vrublevskaja O Gall A Trinkunas G Robert B Valkunas L 《Photosynthesis research》2005,86(1-2):49-59
In order to determine the relationship between the pigment–protein and the pigment–pigment interactions, the measurements of absorption spectra of the peripheral light-harvesting complex LH2 from the purple bacteria Rhodobacter sphaeroides solvated in glycerol/buffer solution were carried out in a wide temperature range, from 4 to 250 K. The SDFs used for simulating the temperature dependence of B800 and B850 bands were determined in a parametric form. To fit experimental spectra the overall exciton–phonon coupling had to be assumed to be weak for B850 (λ/2V ≈ 0.3, where λ is the reorganization energy and V is the nearest-neighbor dipole–dipole coupling for bacteriochlorophylls). At physiological temperatures the intermediate nuclear bath dynamics compares with the magnitude of energy gap fluctuations. Slower dynamics with κ ≈ 0.39, where κ is the ratio of the nuclear relaxation rate and the line width parameter, determines the spectral shape of B850 whilst faster modulations characterize B800 (κ ≈2.39). The static disorder for the B800 band is relatively high with the characteristic value of the inhomogeneous bandwidth Γinh ≈120 cm−1, while for the B850 band this value is almost equal to the dipole–dipole coupling strength (Γinh ≈360 cm−1). It has been found that the LH2 absorption spectrum is likely to be influenced by the temperature dependence of the dielectric constant of the solution in the high temperature range, when the glycerol/buffer solution is in the liquid state. 相似文献
6.
Urboniene V Vrublevskaja O Trinkunas G Gall A Robert B Valkunas L 《Biophysical journal》2007,93(6):2188-2198
We have characterized the influence of the protein environment on the spectral properties of the bacteriochlorophyll (Bchl) molecules of the peripheral light-harvesting (or LH2) complex from Rhodobacter sphaeroides. The spectral density functions of the pigments responsible for the 800 and 850 nm electronic transitions were determined from the temperature dependence of the Bchl absorption spectra in different environments (detergent micelles and native membranes). The spectral density function is virtually independent of the hydrophobic support that the protein experiences. The reorganization energy for the B850 Bchls is 220 cm(-1), which is almost twice that of the B800 Bchls, and its Huang-Rhys factor reaches 8.4. Around the transition point temperature, and at higher temperatures, both the static spectral inhomogeneity and the resonance interactions become temperature-dependent. The inhomogeneous distribution function of the transitions exhibits less temperature dependence when LH2 is embedded in membranes, suggesting that the lipid phase protects the protein. However, the temperature dependence of the fluorescence spectra of LH2 cannot be fitted using the same parameters determined from the analysis of the absorption spectra. Correct fitting requires the lowest exciton states to be additionally shifted to the red, suggesting the reorganization of the exciton spectrum. 相似文献
7.
Gall A Berera R Alexandre MT Pascal AA Bordes L Mendes-Pinto MM Andrianambinintsoa S Stoitchkova KV Marin A Valkunas L Horton P Kennis JT van Grondelle R Ruban A Robert B 《Biophysical journal》2011,(4):934-942
The photosynthetic light-harvesting systems of purple bacteria and plants both utilize specific carotenoids as quenchers of the harmful (bacterio)chlorophyll triplet states via triplet-triplet energy transfer. Here, we explore how the binding of carotenoids to the different types of light-harvesting proteins found in plants and purple bacteria provides adaptation in this vital photoprotective function. We show that the creation of the carotenoid triplet states in the light-harvesting complexes may occur without detectable conformational changes, in contrast to that found for carotenoids in solution. However, in plant light-harvesting complexes, the triplet wavefunction is shared between the carotenoids and their adjacent chlorophylls. This is not observed for the antenna proteins of purple bacteria, where the triplet is virtually fully located on the carotenoid molecule. These results explain the faster triplet-triplet transfer times in plant light-harvesting complexes. We show that this molecular mechanism, which spreads the location of the triplet wavefunction through the pigments of plant light-harvesting complexes, results in the absence of any detectable chlorophyll triplet in these complexes upon excitation, and we propose that it emerged as a photoprotective adaptation during the evolution of oxygenic photosynthesis. 相似文献
8.
Gelzinis Andrius Chmeliov Jevgenij Ruban Alexander V. Valkunas Leonas 《Photosynthesis research》2018,135(1-3):275-284
Photosynthesis Research - Non-photochemical quenching (NPQ) is responsible for protecting the light-harvesting apparatus of plants from damage at high light conditions. Although it is agreed that... 相似文献
9.
10.
Generation of fluorescence quenchers from the triplet states of chlorophylls in the major light-harvesting complex II from green plants 总被引:1,自引:0,他引:1
Laser flash-induced changes of the fluorescence yield were studied in aggregates of light-harvesting complex II (LHCII) on a time scale ranging from microseconds to seconds. Carotenoid (Car) and chlorophyll (Chl) triplet states, decaying with lifetimes of several microseconds and hundreds of microseconds, respectively, are responsible for initial light-induced fluorescence quenching via singlet-triplet annihilation. In addition, at times ranging from milliseconds to seconds, a slow decay of the light-induced fluorescence quenching can be observed, indicating the presence of additional quenchers generated by the laser. The generation of the quenchers is found to be sensitive to the presence of oxygen. It is proposed that long-lived fluorescence quenchers can be generated from Chl triplets that are not transferred to Car molecules. The quenchers could be Chl cations or other radicals that are produced directly from Chl triplets or via Chl triplet-sensitized singlet oxygen. Decay of the quenchers takes place on a millisecond to second time scale. The decay is slowed by a few orders of magnitude at 77 K indicating that structural changes or migration-limited processes are involved in the recovery. Fluorescence quenching is not observed for trimers, which is explained by a reduction of the quenching domain size compared to that of aggregates. This type of fluorescence quenching can operate under very high light intensities when Chl triplets start to accumulate in the light-harvesting antenna. 相似文献