首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2733篇
  免费   189篇
  2922篇
  2024年   4篇
  2023年   19篇
  2022年   49篇
  2021年   94篇
  2020年   46篇
  2019年   68篇
  2018年   94篇
  2017年   76篇
  2016年   110篇
  2015年   166篇
  2014年   212篇
  2013年   233篇
  2012年   308篇
  2011年   262篇
  2010年   156篇
  2009年   140篇
  2008年   143篇
  2007年   146篇
  2006年   122篇
  2005年   107篇
  2004年   97篇
  2003年   78篇
  2002年   70篇
  2001年   11篇
  2000年   8篇
  1999年   18篇
  1998年   10篇
  1997年   7篇
  1996年   6篇
  1995年   3篇
  1994年   7篇
  1993年   12篇
  1992年   3篇
  1991年   5篇
  1990年   8篇
  1989年   4篇
  1988年   1篇
  1985年   3篇
  1984年   2篇
  1982年   2篇
  1981年   2篇
  1980年   3篇
  1979年   1篇
  1977年   1篇
  1976年   1篇
  1974年   1篇
  1972年   1篇
  1969年   1篇
  1967年   1篇
排序方式: 共有2922条查询结果,搜索用时 15 毫秒
1.
Abstract. The A6 antigen - a surface-exposed component shared by mouse oval and biliary epithelial cells - was examined during prenatal development of mouse in order to elucidate its relation to liver progenitor cells. Immunohistochemical demonstration of the antigen was performed at the light and electron microscopy level beginning from the 9.5 day of gestation (26–28 somite pairs).
Up to the 11.5 day of gestation A6 antigen is found only in the visceral endoderm of yolk sac and gut epithelium, while liver diverticulum and liver are A6-negative. In the liver epithelial lineages A6 antigen behaves as a strong and reliable marker of biliary epithelial cells where it is found beginning from their emergence on the 15th day of gestation. It was not revealed in immature hepato-cytes beginning from the 16th day of gestation. However weak expression of the antigen was observed in hepato-blasts on 12–15 days of gestation possibly reflecting their ability to differentiate along either hepatocyte or biliary epithelial cell lineages.
Surprisingly, A6 antigen turned out to be a peculiar marker of the crythroid lineage: in mouse fetuses it distinguished A6 positive liver and spleen erythroblasts from A6 negative early hemopoietic cells of yolk sac origin. Moreover in the liver, A6 antigen probably distinguishes two waves of erythropoiesis: it is found on the erythroblasts from the 11.5 day of gestation onward while first extravascular erythroblasts appear in the liver on the 10th day of gestation. Both fetal and adult erythrocytes are A6-negative.
In the process of organogenesis A6 antigen was revealed in various mouse fetal organs. Usually it was found on plasma membranes of mucosal or ductular epithelial cells. Investigation of A6 antigen's physiological function would probably explain such specific localization.  相似文献   
2.

Background  

Ascidians are tunicates, the taxon recently proposed as sister group to the vertebrates. They possess a chordate-like swimming larva, which metamorphoses into a sessile adult. Several ascidian species form colonies of clonal individuals by asexual reproduction. During their life cycle, ascidians present three muscle types: striated in larval tail, striated in the heart, and unstriated in the adult body-wall.  相似文献   
3.
4.
5.
The role of the integral inner membrane subunit e in self-association of F0F1ATP synthase from bovine heart mitochondria was analyzed by in situ limited proteolysis, blue native PAGE/iterative SDS-PAGE, and LC-MS/MS. Selective degradation of subunit e, without disrupting membrane integrity or ATPase capacity, altered the oligomeric distribution of F0F1ATP synthase, by eliminating oligomers and reducing dimers in favor of monomers. The stoichiometry of subunit e was determined by a quantitative MS-based proteomics approach, using synthetic isotope-labelled reference peptides IAQL*EEVK, VYGVGSL*ALYEK, and ELAEAQEDTIL*K to quantify the b, γ and e subunits, respectively. Accuracy of the method was demonstrated by confirming the 1:1 stoichiometry of subunits γ and b. Altogether, the results indicate that the integrity of a unique copy of subunit e is essential for self-association of mammalian F0F1ATP synthase. Elena Bisetto and Paola Picotti contributed equally to this work.  相似文献   
6.
We have synthesized and evaluated a series of 1,4-disubstituted-triazole derivatives for inhibition of the rat NaV1.6 sodium channel isoform, an isoform thought to play an important role in controlling neuronal firing. Starting from a series of 2,4(1H)-diarylimidazoles previously published, we decided to extend the SAR study by replacing the imidazole with a different heterocyclic scaffold and by varying the aryl substituents on the central aromatic ring. The 1,4-disubstituted 1,2,3-triazoles were prepared employing the copper-catalyzed azide–alkyne cycloaddition (CuAAC). Many of the new molecules were able to block the rNav1.6 currents at 10 μM by over 20%, displaying IC50 values ranging in the low micromolar, thus indicating that triazole can efficiently replace the central heterocyclic core. Moreover, the introduction of a long chain at C4 of the central triazole seems beneficial for increased rNav1.6 current block, whereas the length of N1 substituent seems less crucial for inhibition, as long as a phenyl ring is not direcly connected to the triazole. These results provide additional information on the structural features necessary for block of the voltage-gated sodium channels. These new data will be exploited in the preparation of new compounds and could result in potentially useful AEDs.  相似文献   
7.
Studying cartilage differentiation, we observed the emergence of inflammation-related proteins suggesting that a common pathway was activated in cartilage differentiation and inflammation. In the present paper, we investigated the expression pathway of the inflammation-related enzyme Cyclooxygenase-2 (COX-2) during differentiation and inflammatory response of the chondrocytic cell line MC615. Cells were cultured either as (i) proliferating prechondrogenic cells expressing type I collagen or (ii) differentiated hyperconfluent cells expressing Sox9 and type II collagen. The p38 and the NF-kB pathways were investigated in standard conditions and after inflammatory agents treatment. NF-kB was constitutively activated in differentiated cells. The activation level of NF-kB in differentiated cells was comparable to the level in proliferating cells treated with the inflammatory agent LPS. In both cases, p65 was bound to the NF-kB consensus sequence of COX-2 promoter. p38, constitutively activated in differentiated cells, was activated in proliferating cells by treatment with LPS or IL-1alpha. In stimulated proliferating cells the two pathways are connected since addition of the p38-specific inhibitor SB203580 inhibited p38 activation, significantly reduced NF-kB activation and repressed COX-2 synthesis indicating that p38 is upstream NF-kB activation and COX-2 synthesis. In differentiated cells, the treatment with the inflammatory agent neither enhance NF-kB activation, nor synthesis of COX-2 while the addition of SB203580 neither repressed activation of p38, nor COX-2 synthesis, suggesting a constitutive activation of a p38/NF-kB/COX2 pathway. Our data indicate that in chondrocytes, COX-2 is expressed via p38 activation/NF-kB recruitment during both differentiation and inflammatory response.  相似文献   
8.
This paper summarises the experience accumulated duringthe field application of biopreparation `Rhoder' (solely or in a combinationwith preliminary mechanical collection of free oil) for remediation of oil polluted aquatic systems and soils in the Moscow region and Western Siberia during 1994–1999.It was demonstrated that `Rhoder' had a very high efficiency (>99%) for bioremediation of the open aquatic surfaces (100 m2 bay of the River Chernaya, two 5,000 m2 lakes in Vyngayakha) at initial level of oil pollution of 0.4–19.1 g/l. During remediation of the wetland (2,000 m2) in Urai (initial level of oil pollution of 10.5 g/l), a preliminary mechanical collection of oil was applied (75% removal) followed by a triple treatment with `Rhoder'. It resulted in an overall treatment efficiency of 94%. Relatively inferior results of bioremediation of the 10,000 m2 wetland in Vyngayakha (65% removal) and the 1,000 m2 marshy peat soil in Nizhnevartovsk (19% removal) can be attributed to the very high initial level of oil pollution (24.3 g/l and >750 g/g dry matter, respectively) aggravated by the fact that it was impossible to apply a preliminary mechanical collection of oil on these sites. A possible strategy for remediation of such heavily polluted sitesis discussed.  相似文献   
9.
Membrane fusion underlies multiple processes, including exocytosis of hormones and neurotransmitters. Membrane fusion starts with the formation of a narrow fusion pore. Radial expansion of this pore completes the process and allows fast release of secretory compounds, but this step remains poorly understood. Here we show that inhibiting the expression of the small GTPase Cdc42 or preventing its activation with a dominant negative Cdc42 construct in human neuroendocrine cells impaired the release process by compromising fusion pore enlargement. Consequently the mode of vesicle exocytosis was shifted from full-collapse fusion to kiss-and-run. Remarkably, Cdc42-knockdown cells showed reduced membrane tension, and the artificial increase of membrane tension restored fusion pore enlargement. Moreover, inhibiting the motor protein myosin II by blebbistatin decreased membrane tension, as well as fusion pore dilation. We conclude that membrane tension is the driving force for fusion pore dilation and that Cdc42 is a key regulator of this force.  相似文献   
10.
Neuronal computations strongly depend on inhibitory interactions. One such example occurs at the first retinal synapse, where horizontal cells inhibit photoreceptors. This interaction generates the center/surround organization of bipolar cell receptive fields and is crucial for contrast enhancement. Despite its essential role in vision, the underlying synaptic mechanism has puzzled the neuroscience community for decades. Two competing hypotheses are currently considered: an ephaptic and a proton-mediated mechanism. Here we show that horizontal cells feed back to photoreceptors via an unexpected synthesis of the two. The first one is a very fast ephaptic mechanism that has no synaptic delay, making it one of the fastest inhibitory synapses known. The second one is a relatively slow (τ≈200 ms), highly intriguing mechanism. It depends on ATP release via Pannexin 1 channels located on horizontal cell dendrites invaginating the cone synaptic terminal. The ecto-ATPase NTPDase1 hydrolyses extracellular ATP to AMP, phosphate groups, and protons. The phosphate groups and protons form a pH buffer with a pKa of 7.2, which keeps the pH in the synaptic cleft relatively acidic. This inhibits the cone Ca2+ channels and consequently reduces the glutamate release by the cones. When horizontal cells hyperpolarize, the pannexin 1 channels decrease their conductance, the ATP release decreases, and the formation of the pH buffer reduces. The resulting alkalization in the synaptic cleft consequently increases cone glutamate release. Surprisingly, the hydrolysis of ATP instead of ATP itself mediates the synaptic modulation. Our results not only solve longstanding issues regarding horizontal cell to photoreceptor feedback, they also demonstrate a new form of synaptic modulation. Because pannexin 1 channels and ecto-ATPases are strongly expressed in the nervous system and pannexin 1 function is implicated in synaptic plasticity, we anticipate that this novel form of synaptic modulation may be a widespread phenomenon.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号