首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2860篇
  免费   143篇
  国内免费   2篇
  3005篇
  2023年   10篇
  2022年   20篇
  2021年   55篇
  2020年   27篇
  2019年   44篇
  2018年   67篇
  2017年   61篇
  2016年   85篇
  2015年   121篇
  2014年   156篇
  2013年   201篇
  2012年   207篇
  2011年   239篇
  2010年   136篇
  2009年   124篇
  2008年   189篇
  2007年   172篇
  2006年   173篇
  2005年   172篇
  2004年   173篇
  2003年   169篇
  2002年   136篇
  2001年   11篇
  2000年   10篇
  1999年   17篇
  1998年   27篇
  1997年   24篇
  1996年   19篇
  1995年   22篇
  1994年   11篇
  1993年   21篇
  1992年   9篇
  1991年   7篇
  1990年   12篇
  1989年   5篇
  1988年   7篇
  1987年   7篇
  1986年   9篇
  1985年   5篇
  1984年   6篇
  1983年   9篇
  1982年   7篇
  1981年   2篇
  1980年   4篇
  1979年   4篇
  1975年   2篇
  1974年   3篇
  1973年   3篇
  1971年   1篇
  1970年   2篇
排序方式: 共有3005条查询结果,搜索用时 15 毫秒
1.
The nucleotide sequences of the cloned human salivary and pancreatic α-amylase cDNAs correspond to the continuous mRNA sequences of 1768 and 1566 nucleotides, respectively. These include all of the amino acid coding regions. Salivary cDNA contains 200 bp in the 5′-noncoding region and 32 in the 3′-noncoding region. Pancreatic cDNA contains 3 and 27 bp of 5′- and 3′-noncoding regions, respectively. The nucleotide sequence humology of the two cDNAs is 96% in the coding region, and the predicted amino acid sequences are 94% homologous.Comparison of the sequences of human α-amylase cDNAs with those previously obtained for mouse α-amylase genes (Hagenbuchle et al., 1980; Schibler et al., 1982) showed the possibility of gene conversion between the two genes of human α-amylase.  相似文献   
2.
Starfish waste has been shown to be an effective compost material not only in the promotion of plant growth but also in terms of having insecticidal activity. In the present study, plant growth regulation by chemicals from starfish was examined. The aqueous fraction from a hot water extract of the starfish Asterias amurensis Lütken showed plant-growth activity, while the aqueous fraction from a methanol extract inhibited growth of Brassica campestris. The lipophilic fraction from the methanol extract also exhibited a plant growth-promoting effect. The active components from each extract were identified. Asterubine from the hot water extract promoted plant growth. A ceramide from the lipophilic fraction showed root growth promoting effect, and three glucocerebrosides had promotive effects on the entire plant. Asterosaponins were identified as the main growth inhibitors in the aqueous fraction of the methanol extract. These active compounds from starfish waste could be analyzed as potential plant growth regulators in agricultural applications in the future.  相似文献   
3.
Chloroplast DNA (cpDNA) and mitochondrial DNA (mtDNA) of malesterile tobacco plants obtained by fusion of Nicotiana tabacumprotoplasts and X-irradiated N. debneyi protoplasts were analyzed.Digestion of cpDNA isolated from ten male sterile lines withfour restriction endonucleases (EcoRI, XhoI, SmaI and HindIII)indicated that these lines possessed either one or the otherparental chloroplast genome. Neither mixture of two types ofcpDNA nor unique restriction fragments were detected in anyof the cases examined. The genetic constitution of chloroplastgenomes identified by restriction analysis of cpDNA showed goodagreement with that based on isoelectric focusing of the largesubunit of the Fraction I protein. The mtDNA from five fusion-derivedmale sterile plants showed banding patterns quite differentfrom each other and from the parental plants. Each plant exhibitednew restriction fragments not found in the parental species.These findings indicate that recombinational events in the mitochondrialgenomes take place rather frequently in the mixed cytoplasmsafter protoplast fusion, whereas the mixed chloroplasts becomesegregated to homogeneity. (Received June 19, 1987; Accepted October 5, 1987)  相似文献   
4.
To isolate and identify the plasma factor which stimulates prostaglandin I 2 production by rat aortic ring, a human plasma fraction which showed a major stimulating activity on prostaglandin I 2 production was purified by ultrafiltrate, Sephadex G-10 gel filtration and QAE-Sephadex column chromatography. The purified plasma factor was identified as acid by its ultraviolet and infrared absorption spectroscopy, and 1H nmr and 13C nmr spectroscopy. The stimulating activity of the purified plasma factor and that of authentic uric acid coincided with each other. The stimulating potency of uric acid at its physiological concentration in human plasma (about 50 μg/ml) was half of the deproteinized human plasma, and was about 30 fold stronger than that of L-tryptophan, a cofactor of prostaglandin hyperoxidase.  相似文献   
5.
O antigen mutants were obtained from Salmonella durban, a group D(1) organism, by treatment with N-methyl-N'-nitro-N-nitrosoguanidine. Serological studies demonstrated that the mutants lost the O-9 antigen factor of the parent organism but acquired the O-2 factor specific to group A Salmonella. Lipopolysaccharides of the mutant strains contained paratose which determines the specificity of O-2 factor. Tyvelose, present in the wild-type lipopolysaccharide, was not found in the mutants. H antigens and other biological characteristics of the mutant strains were the same as those of the wild-type organism. The present finding implies that group A Salmonella species might be derived from group D(1) organisms.  相似文献   
6.
The nucleotide sequences of 11 variable gene segments coding for rabbit T-cell receptor beta (Tcrb-V) chains were determined by directly sequencing fragments amplified by the cassette-ligation mediated polymerase chain reaction (CLM-PCR) and by modified anchor PCR without the cloning procedure. The nucleotide sequences in two of these 11 rabbit Tcrb-V gene segments coincided with those in two of the four rabbit Tcrb-V gene segments previously reported; the others have not been described. The percentage similarity of each nucleotide sequence of the 11 rabbit Tcrb-V gene segments was analyzed and the segments were divided into nine families, which were homologous to nine human families (Vb 2, 3, 4, 5, 7, 8, 10, 18, and 22), respectively.The nucleotide sequence data reported in this paper have been submitted to the DDBJ, EMBL, and GenBank nucleotide sequence databases and have been assigned the accession numbers D17416-D17426.  相似文献   
7.
We examined whether inhibitors of the arachidonic acid cascade inhibited nitric oxide (NO) production, as measured by nitrite concentration, either in macrophages or by their cytosolic fractions. Nitrite production by peritoneal macrophages from mice receiving OK-432 treatment was significantly inhibited by phospholipase A2 inhibitors [dexamethasone and 4-bromophenacyl bromide (4-BPB)], lipoxygenase inhibitors [nordihydroguaiaretic acid (NDGA) and ketoconazole] and a glutathioneS-transferase (leukotrienes LTA4-LTC4) inhibitor (ethacrynic acid). However, caffeic acid and esculetin, inhibitors of 5- and 12-lipoxygenase respectively, were not inhibitory. On the other hand, indomethacin, a cyclooxygenase inhibitor, slightly inhibited whereas another inhibitor, ibuprofen, did not. Inhibition of the nitrite production by dexamethasone, 4-BPB, NDGA and ethacrynic acid was also demonstrated when the macrophages were restimulated ex vivo with OK-432 or with lipopolysaccharide. The inhibitory activity of dexamethasone, NDGA and ethacrynic acid was significantly reduced by ex vivo restimulation with OK-432, whereas that of 4-BPB was hardly affected. Furthermore, the inhibitory activity of dexamethasone, NDGA and ethacrynic acid was much higher when the macrophages were continuously exposed to the agents than when they were pulsed. Meanwhile, inhibition by 4-BPB was almost the same with either treatment. In addition, the inhibitory activity of these agents was not blocked withl-arginine, a substrate of NO synthases, or with arachidonate metabolites (LTB4, LTC4 and LTE4). Ethacrynic acid and 4-BPB, but not dexamethasone and NDGA, also inhibited nitrite production by the cytosolic fractions from OK-432-restimulated peritoneal macrophages, and the inhibitory activity of 4-BPB was superior to that of ethacrynic acid. These agents, however, did not inhibit nitrite production from sodium nitroprusside, a spontaneous NO-releasing compound. These results indicate that dexamethasone, 4-BPB, NDGA and ethacrynic acid inhibited the production of NO by macrophages through at least two different mechanisms: one was inhibited by dexamethasone, NDGA and ethacrynic acid and the other by 4-BPB. Furthermore, 4-BPB and ethacrynic acid directly inhibited the activity of the NO synthase in macrophages, suggesting that the agents work by binding to the active site(s) of the enzyme.  相似文献   
8.
Myoglobin was isolated from the radular muscle of the chitonLiolophura japonica, a primitive archigastropodic mollusc.Liolophura contains three monomeric myoglobins (I, II, and III), and the complete amino acid sequence of myoglobin I has been determined. It is composed of 145 amino acid residues, and the molecular mass was calculated to be 16,070 D. The E7 distal histidine, which is replaced by valine or glutamine in several molluscan globins, is conserved inLiolophura myoglobin. The autoxidation rate at physiological conditions indicated thatLiolophura oxymyoglobin is fairly stable when compared with other molluscan myoglobins. The amino acid sequence ofLiolophura myoglobin shows low homology (11–21%) with molluscan dimeric myoglobins and hemoglobins, but shows higher homology (26–29%) with monomeric myoglobins from the gastropodic molluscsAplysia, Dolabella, andBursatella. A phylogenetic tree was constructed from 19 molluscan globin sequences. The tree separated them into two distinct clusters, a cluster for muscle myoglobins and a cluster for erythrocyte or gill hemoglobins. The myoglobin cluster is divided further into two subclusters, corresponding to monomeric and dimeric myoglobins, respectively.Liolophura myoglobin was placed on the branch of monomeric myoglobin lineage, showing that it diverged earlier from other monomeric myoglobins. The hemoglobin cluster is also divided into two subclusters. One cluster contains homodimeric, heterodimeric, tetrameric, and didomain chains of erythrocyte hemoglobins of the blood clamsAnadara, Scapharca, andBarbatia. Of special interest is the other subcluster. It consists of three hemoglobin chains derived from the bacterial symbiont-harboring clamsCalyptogena andLucina, in which hemoglobins are supposed to play an important role in maintaining the symbiosis with sulfide bacteria.  相似文献   
9.
The nucleotide sequence data reported in this paper have been submitted to the GSDB, DDBJ, EMBL, and NCBI nucleotide sequence databases and have been assigned the accession numbers D49841 (RCD28), D49844 (RCTLA-4), D49842 (RCD80), and D49843 (RCD86)  相似文献   
10.
Effects of nitrogen dioxide (NO2) exposure on prostacyclin (PGIP2) synthesis in the rat lung and thromboxane A2 (TXA2) synthesis in the platelets were studied. Male Wistar rats were exposed to 10 ppm NO2 for 1, 3, 5, 7 and 14 days. PGI2 synthesizing activity of homogenized lung decreased. The damage of PGI2 synthesizing activity reaches its maximum at 3 days. At 14 days, PGI2 synthesizing activity returned to the normal level. The activity of PGI2 synthetase decreased significantly. The formation of lipid peroxides due to NO2 exposure may cause the depression of PGI2 synthesizing activity of lung. On the other hand, platelet TXA2 synthesizing activity increased. This increased TXA2 synthesizing activity lasted at least till 3 days. Then, it returned to the normal level. The counts of platelet were decreased significantly by 1, 3, 5 and 7 days NO2 exposure. Then the decreased counts of platelet returned to the normal level at 14 days NO2 exposure. These results indicate that the depression of PGI2 synthesizing activity lung by NO2 exposure cause an increase in TXA2 synthesizing activity of platelets. It may contribute to induce platelet aggregation and to the observed decrease in the number of platelets during NO2 exposure.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号