首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   174篇
  免费   4篇
  178篇
  2018年   1篇
  2017年   2篇
  2016年   1篇
  2015年   5篇
  2014年   2篇
  2013年   3篇
  2012年   4篇
  2011年   7篇
  2010年   2篇
  2009年   4篇
  2008年   7篇
  2007年   3篇
  2006年   7篇
  2005年   6篇
  2004年   5篇
  2003年   10篇
  2002年   9篇
  2001年   4篇
  2000年   1篇
  1999年   3篇
  1998年   2篇
  1997年   7篇
  1996年   3篇
  1995年   5篇
  1994年   4篇
  1993年   4篇
  1992年   1篇
  1991年   5篇
  1990年   2篇
  1989年   3篇
  1988年   3篇
  1987年   1篇
  1986年   5篇
  1985年   2篇
  1983年   1篇
  1982年   4篇
  1981年   8篇
  1980年   3篇
  1979年   3篇
  1975年   5篇
  1974年   2篇
  1973年   4篇
  1972年   3篇
  1971年   4篇
  1970年   1篇
  1967年   1篇
  1962年   1篇
  1959年   2篇
  1954年   1篇
  1929年   1篇
排序方式: 共有178条查询结果,搜索用时 0 毫秒
1.
2.
Effects of mineral nitrogen (2, 4, 6 and 8 m M NH4NO3) and nodulation with Rhizobium on frost hardiness in seedlings of white clover ( Trifolium repens ) have been studied. Seedlings of a population from Bodø (67°N lat.) were grown in Leonard jars under controlled conditions in a phytotron. For induction of frost hardening, plants were first exposed to 12 h photoperiod conditions for 2 weeks at 18°C, then for 2 weeks at 6°C and finally for 2 weeks at 0.5°C. Frost hardiness after treatments at 6 and 0.5°C was significantly enhanced by increasing nitrogen supply and was positively correlated with total nitrogen content of the stolons. Frost hardiness of nodulated plants correlated to the tissue nitrogen concentration. Content of soluble proteins in stolons decreased during hardening at 6°C but did not change during treatment at 0.5°C. There were minor changes in total amount of free amino acids during hardening. Both absolute and relative amounts of proline and arginine increased, and those of asparagine decreased during hardening. Absolute amounts of all free amino acids increased with increasing nitrogen supply, but the changes during hardening were similar in all treatments. There was a significant increase in the content of soluble carbohydrates during hardening. However, this increase was inversely related to nitrogen supply.  相似文献   
3.
The terrestrial plant Borszczowia aralocaspica (Chenopodiaceae) has recently been shown to contain the entire C(4) photosynthesis mechanism within individual, structurally and biochemically polarized chlorenchyma cells rather than in a dual cell system, as has been the paradigm for this type of carbon fixation (Nature 414: 543-546, 2001). Analysis of carbon isotope composition and (14)CO(2) fixation shows that photosynthesis and growth of B. aralocaspica occurs through carbon acquired by C(4) photosynthesis. The development of this unique single-cell C(4) system in chlorenchyma cells was studied by analysis of young (0.2-0.3 cm length), intermediate (ca. 0.5-0.6 cm length), and mature leaves (ca. 3 cm length). The length of chlorenchyma cells approximately doubles from young to intermediate and again from intermediate to the mature leaf stage. In young chlorenchyma cells, there is a single type of chloroplast; the chloroplasts are evenly distributed throughout the cytosol, and all contain starch and rubisco. During leaf development, the activities of phosphoenolpyruvate carboxylase (PEPC; which is cytosolic), rubisco, and pyruvate,Pi dikinase (PPDK) increase on a chlorophyll basis. As leaves mature, chloroplasts differentiate into two distinct structural and biochemical types that are spatially separated into the proximal and distal parts of the cell (the proximal end being closest to the center of the leaf). The early stages of this polarization are observed in intermediate leaves, and the polarization is fully developed in mature leaves. The chloroplasts in the distal ends of the cell have reduced grana and little starch, while those at the proximal ends have well-developed grana and abundant starch. In mature leaves, PPDK is expressed in chloroplasts at the distal end of the cells, while rubisco and adenosine diphosphate glucose (ADPG) pyrophosphorylase are selectively expressed in chloroplasts at the proximal end of the cell. Mitochondrial polarization also occurs during development as nicotinamide-adenine dinucleotide phosphate-malic enzyme (NAD-ME) and the photorespiratory enzyme glycine decarboxylase are expressed in mature but not young leaves and are localized in mitochondria at the proximal end of the cells. The data show that single-cell C(4) develops from a single pool of identical organelles that develop differential biochemical functions and spatial partitioning in the cell during maturation.  相似文献   
4.
Cold-Induced Freezing Tolerance in Arabidopsis   总被引:34,自引:0,他引:34  
Changes in the physiology of plant leaves are correlated with enhanced freezing tolerance and include accumulation of compatible solutes, changes in membrane composition and behavior, and altered gene expression. Some of these changes are required for enhanced freezing tolerance, whereas others are merely consequences of low temperature. In this study we demonstrated that a combination of cold and light is required for enhanced freezing tolerance in Arabidopsis leaves, and this combination is associated with the accumulation of soluble sugars and proline. Sugar accumulation was evident within 2 h after a shift to low temperature, which preceded measured changes in freezing tolerance. In contrast, significant freezing tolerance was attained before the accumulation of proline or major changes in the percentage of dry weight were detected. Many mRNAs also rapidly accumulated in response to low temperature. All of the cold-induced mRNAs that we examined accumulated at low temperature even in the absence of light, when there was no enhancement of freezing tolerance. Thus, the accumulation of these mRNAs is insufficient for cold-induced freezing tolerance.  相似文献   
5.
In order to optimize transient gene expression in Norway spruce pollen after DNA delivery with particle bombardment, effects of different conditions during homhardmenl were analysed using β-glucuroniduse (GUS) driven by the rice Act I promoter and Inciferase (LUS) driven by the tomato !at 52 promoter as reporter genes. Transient gene expression was significantly increased hy using two bombardments. Also the distance from the stopping plate to the sample was critical to gam maximum gene expression. There was no significant difference between gold and tungsten particles, and the number of positively stained pollen increased with increasing DNA concentration, from 5 to 40 pg DNA added in the DNA/tungsten solution The DNA delivery to Norway spruce pollen was most efficient at a chamber pressure above 70 kPa.  相似文献   
6.
Plants of the fern Matteuccia struthiopteris from northern and southern populations in Norway were studied in a phytotron. Relative growth rate (RGR), growth period, and sporophyll production were measured under different photoperiod (12–24 h) day-length and temperature (9–21 °C) treatments. For the southern plants, there were no significant differences between the different light treatments, but for the northern plants there was a significant (p<0.01) linear increase in the mean maximum RGR with increasing day-length. Small, but statistically significant (p<0.01) differences were found between northern and southern plants when the mean maximum RGR-values were compared. When plants from different origin were exposed to different treatment, there were major differences between the populations in the production of sporophylls (p<0.0001). Southern plants produced in average three times more sporophylls than the northern plants, and they had also higher proportions of fertile plants. Diurnal alternating temperature treatments gave no significant (p>0.05) effect on the mean maximum RGR compared with constant temperatures, but they gave significantly higher production of sporophylls. In general, the northern plants had a higher temperature threshold (approximately 12 °C) for sporophyll production than the southern plants (approximately 9 °C). Plants exposed to 24 h with natural light were generally more often fertile than plants exposed to a shorter photoperiod. The mean maximum RGR-values and time needed to develop the fronds at the 9 °C treatment were fairly equal to those found under natural conditions close to the altitudinal distribution limit of M.struthiopteris in W Norway. In general, the investigation showed that the applied temperature and light treatments affected sporophyll production more than vegetative growth.  相似文献   
7.
Cessation of shoot elongation in seedlings of Salix pentandra L. is induced by short photoperiod. Gibbereliin A9 (GA9) applied either to the apical bud or injected into a mature leaf, induced shoot elongation under a short photoperiod of 12 h, and GA9 could completely substitute for a transfer to a long photoperiod. When [3H]GA9 or [2H2]GA9 was injected into a leaf, no [3H]GA9 was detected in the elongating apex and only traces of [3H]GA9 were found in the shoot above the treated leaf. By the use of gas chromatography-mass spectrometry (GC-MS), [2H2]GA20 was identified as the main metabolite of [2H2]GA9 in both the shoot and the treated leaf. In addition, [2H2]GA1 and [2H2]GA29 were also identified as metabolites of [2H2]GA9. These results are consistent with the hypothesis that exogenous GA, promotes shoot elongation in Salix through its metabolism to GA20 and GA,.  相似文献   
8.
A mutant of the NAD-malic enzyme-type C(4) plant, Amaranthus edulis, which lacks phosphoenolpyruvate carboxylase (PEPC) in the mesophyll cells was studied. Analysis of CO(2) response curves of photosynthesis of the mutant, which has normal Kranz anatomy but lacks a functional C(4) cycle, provided a direct means of determining the liquid phase-diffusive resistance of atmospheric CO(2) to sites of ribulose 1,5-bisphosphate carboxylation inside bundle sheath (BS) chloroplasts (r(bs)) within intact plants. Comparisons were made with excised shoots of wild-type plants fed 3,3-dichloro-2-(dihydroxyphosphinoyl-methyl)-propenoate, an inhibitor of PEPC. Values of r(bs) in A. edulis were 70 to 180 m(2) s(-1) mol(-1), increasing as the leaf matured. This is about 70-fold higher than the liquid phase resistance for diffusion of CO(2) to Rubisco in mesophyll cells of C(3) plants. The values of r(bs) in A. edulis are sufficient for C(4) photosynthesis to elevate CO(2) in BS cells and to minimize photorespiration. The calculated CO(2) concentration in BS cells, which is dependent on input of r(bs), was about 2,000 microbar under maximum rates of CO(2) fixation, which is about six times the ambient level of CO(2). High re-assimilation of photorespired CO(2) was demonstrated in both mutant and wild-type plants at limiting CO(2) concentrations, which can be explained by high r(bs). Increasing O(2) from near zero up to ambient levels under low CO(2), resulted in an increase in the gross rate of O(2) evolution measured by chlorophyll fluorescence analysis in the PEPC mutant; this increase was simulated from a Rubisco kinetic model, which indicates effective refixation of photorespired CO(2) in BS cells.  相似文献   
9.
To investigate the effects of acute ethanol administration on the production of proaggregatory thromboxane A2 (TxA2) and anti-aggregatory prostacyclin (PGI2), ethanol (1.5 g/kilogram body weight) was given to eight healthy nonsmoking men, and the stable metabolites thromboxane B2 (TxB2) and 6-keto-prostaglandin F (6-keto-PGF), respectively, measured by radioimmunoassay from serial blood samples before drinking and during the ensuing 18 hours. Each subject was studied as his own control on another occasion when only an equivalent volume of water was given. Serum TxB2 level decreased (p < 0.01) from 206 + 31 ng/ml (mean) ± S.E. to 1672 ± 24 and 161 ± 23 ng/ml (two and four hours after beginning of the drinking, respectively) concomitantly with the attainment of maximal blood ethanol concentrations (about 120 mg/100 ml), whereas no changes occurred in plasma 6-keto-PGF concentrations. Our results may provide an explanation for known effects of ethanol on platelet aggregation. They also raise speculation whether TxA2-inhibition and the antiatherogenic effect of alcohol intake are somehow related.  相似文献   
10.
Human placental microsomes were incubated with [3H]benzo[a]pyrene (BP) and Salmon sperm DNA and the resulting metabolite-nucleoside complexes resolved by Sephadex LH-20 chromatography. The metabolite pattern was analyzed by high-pressure liquid chromatography (HPLC). The incubates were also co-chromatographed with extracts obtained from incubates with rat liver microsomes and [14C]BP. Phenols, quinones and 7,8-dihydrodiol were detected in the placental incubates. Both 9,10- and 4,5-dihydrodiols were very low as compared with control rat liver samples. Placental microsomes catalyzed the binding of BP metabolites to DNA in vitro, giving rise to two main complexes which co-chromatographed with rat liver-produced peaks attributable to 7,8-diol-9,10-epoxide and 7,8-oxide and/or quinones when metabolized further. The nucleoside metabolite peaks attributable to 4,5-oxide and 9-phenol-4,5-oxide were lacking when compared with the binding pattern catalyzed by rat liver. Both the total binding and specific metabolite-nucleoside adducts in the placenta correlated with fluorometrically measured aryl hydrocarbon hydroxylase (AHH) activity and with the amount of dihydrodiol formed. The results demonstrate that both the metabolite pattern and the nucleoside-metabolite complexes formed by the placental microsomes in vitro differed greatly from those produced by rat liver microsomes. These studies also suggest that it is not possible to predict specific patterns of DNA binding from AHH measurements or even from BP metabolite patterns, especially when comparing different tissues and species.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号