全文获取类型
收费全文 | 340篇 |
免费 | 18篇 |
专业分类
358篇 |
出版年
2023年 | 4篇 |
2022年 | 4篇 |
2021年 | 7篇 |
2020年 | 7篇 |
2019年 | 11篇 |
2018年 | 13篇 |
2017年 | 7篇 |
2016年 | 16篇 |
2015年 | 14篇 |
2014年 | 17篇 |
2013年 | 30篇 |
2012年 | 20篇 |
2011年 | 35篇 |
2010年 | 27篇 |
2009年 | 17篇 |
2008年 | 21篇 |
2007年 | 24篇 |
2006年 | 19篇 |
2005年 | 13篇 |
2004年 | 13篇 |
2003年 | 11篇 |
2002年 | 5篇 |
2001年 | 2篇 |
2000年 | 2篇 |
1999年 | 2篇 |
1998年 | 3篇 |
1996年 | 1篇 |
1995年 | 3篇 |
1994年 | 2篇 |
1993年 | 1篇 |
1992年 | 2篇 |
1989年 | 1篇 |
1988年 | 2篇 |
1983年 | 1篇 |
1966年 | 1篇 |
排序方式: 共有358条查询结果,搜索用时 15 毫秒
1.
Chang KH Multani PS Sun KH Vincent F de Pablo Y Ghosh S Gupta R Lee HP Lee HG Smith MA Shah K 《Molecular biology of the cell》2011,22(9):1452-1462
Nuclear fragmentation is a common feature in many neurodegenerative diseases, including Alzheimer's disease (AD). In this study, we show that nuclear lamina dispersion is an early and irreversible trigger for cell death initiated by deregulated Cdk5, rather than a consequence of apoptosis. Cyclin-dependent kinase 5 (Cdk5) activity is significantly increased in AD and contributes to all three hallmarks: neurotoxic amyloid-β (Aβ), neurofibrillary tangles (NFT), and extensive cell death. Using Aβ and glutamate as the neurotoxic stimuli, we show that deregulated Cdk5 induces nuclear lamina dispersion by direct phosphorylation of lamin A and lamin B1 in neuronal cells and primary cortical neurons. Phosphorylation-resistant mutants of lamins confer resistance to nuclear dispersion and cell death on neurotoxic stimulation, highlighting this as a major mechanism for neuronal death. Rapid alteration of lamin localization pattern and nuclear membrane change are further supported by in vivo data using an AD mouse model. After p25 induction, the pattern of lamin localization was significantly altered, preceding neuronal death, suggesting that it is an early pathological event in p25-inducible transgenic mice. Importantly, lamin dispersion is coupled with Cdk5 nuclear localization, which is highly neurotoxic. Inhibition of nuclear dispersion rescues neuronal cells from cell death, underscoring the significance of this event to Cdk5-mediated neurotoxicity. 相似文献
2.
María P. Torres Satyanarayana Rachagani Joshua J. Souchek Kavita Mallya Sonny L. Johansson Surinder K. Batra 《PloS one》2013,8(11)
Pancreatic cancer (PC) remains one of the most lethal human malignancies with poor prognosis. Despite all advances in preclinical research, there have not been significant translation of novel therapies into the clinics. The development of genetically engineered mouse (GEM) models that produce spontaneous pancreatic adenocarcinoma (PDAC) have increased our understanding of the pathogenesis of the disease. Although these PDAC mouse models are ideal for studying potential therapies and specific genetic mutations, there is a need for developing syngeneic cell lines from these models. In this study, we describe the successful establishment and characterization of three cell lines derived from two (PDAC) mouse models. The cell line UN-KC-6141 was derived from a pancreatic tumor of a KrasG12D;Pdx1-Cre (KC) mouse at 50 weeks of age, whereas UN-KPC-960 and UN-KPC-961 cell lines were derived from pancreatic tumors of KrasG12D;Trp53R172H;Pdx1-Cre (KPC) mice at 17 weeks of age. The cancer mutations of these parent mice carried over to the daughter cell lines (i.e. KrasG12D mutation was observed in all three cell lines while Trp53 mutation was observed only in KPC cell lines). The cell lines showed typical cobblestone epithelial morphology in culture, and unlike the previously established mouse PDAC cell line Panc02, expressed the ductal marker CK19. Furthermore, these cell lines expressed the epithelial-mesenchymal markers E-cadherin and N-cadherin, and also, Muc1 and Muc4 mucins. In addition, these cell lines were resistant to the chemotherapeutic drug Gemcitabine. Their implantation in vivo produced subcutaneous as well as tumors in the pancreas (orthotopic). The genetic mutations in these cell lines mimic the genetic compendium of human PDAC, which make them valuable models with a high potential of translational relevance for examining diagnostic markers and therapeutic drugs. 相似文献
3.
Laboratory classes are commonplace and essential in biology departments but can sometimes be cumbersome, unreliable, and a drain on time and resources. As university intakes increase, pressure on budgets and staff time can often lead to reduction in practical class provision. Frequently, the ability to use laboratory equipment, mix solutions, and manipulate test animals are essential learning outcomes, and "wet" laboratory classes are thus appropriate. In others, however, interpretation and manipulation of the data are the primary learning outcomes, and here, computer-based simulations can provide a cheaper, easier, and less time- and labor-intensive alternative. We report the evaluation of two computer-based simulations of practical exercises: the first in chromosome analysis, the second in bioinformatics. Simulations can provide significant time savings to students (by a factor of four in our first case study) without affecting learning, as measured by performance in assessment. Moreover, under certain circumstances, performance can be improved by the use of simulations (by 7% in our second case study). We concluded that the introduction of these simulations can significantly enhance student learning where consideration of the learning outcomes indicates that it might be appropriate. In addition, they can offer significant benefits to teaching staff. 相似文献
4.
5.
Biochemical characteristics of bi-resistant mutants (resistant to ethambutol plus streptomycin or isoniazid plus streptomycin)
of mycobacteria isolated by replica plating fromMycobacterium smegmatis ATCC were compared with those of the drug-susceptible strains. Reduced incorporation of [14C]uracil, [3H]lysine and [14C]acetate into RNA, protein and phospholipids respectively was seen in the resistant mutants. Total phosphorlipids were enhanced
in ethambutol plus streptomycin resistant mutant and decreased in isoniazid plus streptomycin resistant mutant. There were
similar changes in levels of individual phospholipids. The resistant mutants revealed an accumulation of phospholipids in
the cell wall, and a marked decrease of phospholipids in the cell membrane in comparison to the susceptible strain. Several
qualitative alterations in the polypeptide profile (with respect to number and molecular weight) of the crude protein extract
and of different subcellular compartments were seen in the resistant mutants. 相似文献
6.
Reshu Saxena Sudipti Gupta Kavita Singh Kalyan Mitra Anil Kumar Tripathi Raj Kamal Tripathi 《PloS one》2015,10(4)
Nef is an accessory viral protein that promotes HIV-1 replication, facilitating alterations in cellular pathways via multiple protein-protein interactions. The advent of proteomics has expanded the focus on better identification of novel molecular pathways regulating disease progression. In this study, nef was sequenced from randomly selected patients, however, sequence variability identified did not elicited any specific mutation that could have segregated HIV-1 patients in different stages of disease progression. To explore the difference in Nef functionality based on sequence variability we used proteomics approach. Proteomic profiling was done to compare the effect of Nef variants in host cell protein expression. 2DGE in control and Nef transfected SupT1 cells demonstrated several differentially expressed proteins. Fourteen protein spots were detected with more than 1.5 fold difference. Significant down regulation was seen in six unique protein spots in the Nef treated cells. Proteins were identified as Cyclophilin A, EIF5A-1 isoform B, Rho GDI 1 isoform a, VDAC1, OTUB1 and α-enolase isoform 1 (ENO1) through LC-MS/MS. The differential expression of the 6 proteins was analyzed by Real time PCR, Western blotting and Immunofluorescence studies with two Nef variants (RP14 and RP01) in SupT1 cells. There was contrasting difference between the effect of these Nef variants upon the expression of these six proteins. Downregulation of α-enolase (ENO1), VDAC1 and OTUB1 was more significant by Nef RP01 whereas Cyclophilin A and RhoGDI were found to be more downregulated by Nef RP14. This difference in Nef variants upon host protein expression was also studied through a site directed mutant of Nef RP01 (55AAAAAAA61) and the effect was found to be reversed. Deciphering the role of these proteins mediated by Nef variants will open a new avenue of research in understanding Nef mediated pathogenesis. Overall study determines modulation of cellular protein expression in T cells by HIV-1 Nef variants. 相似文献
7.
8.
9.
10.