排序方式: 共有120条查询结果,搜索用时 13 毫秒
1.
Krishna Kumar Singh Ruchi Jain Harini Ramanan Deepak Kumar Saini 《Molecular biotechnology》2014,56(12):1121-1132
Matrix metalloproteinases expression is used as biomarker for various cancers and associated malignancies. Since these proteinases can cleave many intracellular proteins, overexpression tends to be toxic; hence, a challenge to purify them. To overcome these limitations, we designed a protocol where full length pro-MMP2 enzyme was overexpressed in E. coli as inclusion bodies and purified using 6xHis affinity chromatography under denaturing conditions. In one step, the enzyme was purified and refolded directly on the affinity matrix under redox conditions to obtain a bioactive protein. The pro-MMP2 protein was characterized by mass spectrometry, CD spectroscopy, zymography and activity analysis using a simple in-house developed ‘form invariant’ assay, which reports the total MMP2 activity independent of its various forms. The methodology yielded higher yields of bioactive protein compared to other strategies reported till date, and we anticipate that using the protocol, other toxic proteins can also be overexpressed and purified from E. coli and subsequently refolded into active form using a one step renaturation protocol. 相似文献
2.
Dobrzyn A Dobrzyn P Miyazaki M Sampath H Chu K Ntambi JM 《The Journal of biological chemistry》2005,280(24):23356-23362
Stearoyl-CoA desaturase (SCD) is the rate-limiting enzyme in monounsaturated fatty acid synthesis. Previously, we showed that Scd1 deficiency reduces liver triglyceride accumulation and considerably decreases synthesis of very low density lipoprotein and its secretion in both lean and obese mice. In the present study, we found that Scd1 deficiency significantly modulates hepatic glycerophospholipid profile. The content of phosphatidylcholine (PC) was increased by 40% and the activities of CTP:choline cytidylyltransferase (CCT), the rate-limiting enzyme in de novo PC synthesis, and choline phosphotransferase were increased by 64 and 53%, respectively, in liver of Scd1-/- mice. In contrast, the protein level of phosphatidylethanolamine N-methyltransferase, an enzyme involved in PC synthesis via methylation of phosphatidylethanolamine, was decreased by 80% in the liver of Scd1-/- mice. Membrane translocation of CCT is required for its activation. Immunoblot analyses demonstrated that twice as much CCTalpha was associated with plasma membrane in livers of Scd1-/- compared with wild type mice, suggesting that Scd1 mutation leads to an increase in CCT membrane affinity. The incorporation of [(3)H]glycerol into PC was increased by 2.5-fold in Scd1-/- primary hepatocytes compared with those of wild type mice. Furthermore, mitochondrial glycerol-3-phosphate acyltransferase activity was reduced by 42% in liver of Scd1-/- mice; however, the activities of microsomal glycerol-3-phosphate acyltransferase, diacylglycerol acyltransferase, and ethanolamine phosphotransferase were not affected by Scd1 mutation. Our study revealed that SCD1 deficiency specifically increases CCT activity by promoting its translocation into membrane and enhances PC biosynthesis in liver. 相似文献
3.
Rangaswamy J Kumar HV Harini ST Naik N 《Bioorganic & medicinal chemistry letters》2012,22(14):4773-4777
In search for a new antioxidant and antimicrobial agent with improved potency, we synthesized a series of benzofuran based 1,3,5-substituted pyrazole analogues (5a-l) in five step reaction. Initially, o-alkyl derivative of salicyaldehyde readily furnish corresponding 2-acetyl benzofuran 2 in good yield, on treatment with 1,8-diaza bicyclo[5.4.0]undec-7-ene (DBU) in the presence of molecular sieves. Further, aldol condensation with vanillin, Claisen-Schmidt condensation reaction with hydrazine hydrate followed by coupling of substituted anilines afforded target compounds. The structures of newly synthesized compounds were confirmed by IR, (1)H NMR, (13)C NMR, mass, elemental analysis and further screened for their antioxidant and antimicrobial activities. Among the tested compounds 5d and 5f exhibited good antioxidant property with 50% inhibitory concentration higher than that of reference while compounds 5h and 5l exhibited good antimicrobial activity at concentration 1.0 and 0.5 mg/mL compared with standard, streptomycin and fluconazole respectively. 相似文献
4.
Nickens KP Han Y Shandilya H Larrimore A Gerard GF Kaldjian E Patierno SR Ceryak S 《Biochimica et biophysica acta》2012,1823(2):264-272
Acquisition of death-resistance is critical in the evolution of neoplasia. Our aim was to model the early stages of carcinogenesis by examining intracellular alterations in cells that have acquired apoptosis-resistance after exposure to a complex genotoxin. We previously generated sub-populations of BJ-hTERT human diploid fibroblasts, which have acquired death-resistance following exposure to hexavalent chromium [Cr(VI)], a broad-spectrum genotoxicant. Long-term exposure to certain forms of Cr(VI) is associated with respiratory carcinogenesis. Here, we report on the death-sensitivity of subclonal populations derived from clonogenic survivors of BJ-hTERT cells treated with 5 μM Cr(VI) (DR1, DR2), or selected by dilution-based cloning without treatment (CC1). Following Cr(VI) treatment, CC1 cells downregulated expression of the anti-apoptotic protein Bcl-2 and exhibited extensive expression of cleaved caspase 3. In contrast, the DR cells exhibited no cleaved caspase 3 expression and maintained expression of Bcl-2 following recovery from 24 h Cr(VI) exposure. The DR cells also exhibited attenuated mitochondrial-membrane depolarization and mitochondrial retention of cytochrome c and SMAC/DIABLO following Cr(VI) exposure. The DR cells exhibited less basal mtDNA damage, as compared to CC1 cells, which correlates with intrinsic (non-induced) death-resistance. Notably, there was no difference in p53 protein expression before or after treatment among all cell lines. Taken together, our data suggest the presence of more resilient mitochondria in death-resistant cells, and that death-resistance can be acquired in normal human cells early after genotoxin exposure. We postulate that resistance to mitochondrial-mediated cell death and mitochondrial dysregulation may be an initial phenotypic alteration observed in early stage carcinogenesis. 相似文献
5.
6.
Sedegah M Tamminga C McGrath S House B Ganeshan H Lejano J Abot E Banania GJ Sayo R Farooq F Belmonte M Manohar N Richie NO Wood C Long CA Regis D Williams FT Shi M Chuang I Spring M Epstein JE Mendoza-Silveiras J Limbach K Patterson NB Bruder JT Doolan DL King CR Soisson L Diggs C Carucci D Dutta S Hollingdale MR Ockenhouse CF Richie TL 《PloS one》2011,6(10):e24586
7.
Aip1 and cofilin promote rapid turnover of yeast actin patches and cables: a coordinated mechanism for severing and capping filaments 下载免费PDF全文
Rapid turnover of actin structures is required for dynamic remodeling of the cytoskeleton and cell morphogenesis, but the mechanisms driving actin disassembly are poorly defined. Cofilin plays a central role in promoting actin turnover by severing/depolymerizing filaments. Here, we analyze the in vivo function of a ubiquitous actin-interacting protein, Aip1, suggested to work with cofilin. We provide the first demonstration that Aip1 promotes actin turnover in living cells. Further, we reveal an unanticipated role for Aip1 and cofilin in promoting rapid turnover of yeast actin cables, dynamic structures that are decorated and stabilized by tropomyosin. Through systematic mutagenesis of Aip1 surfaces, we identify two well-separated F-actin-binding sites, one of which contributes to actin filament binding and disassembly specifically in the presence of cofilin. We also observe a close correlation between mutations disrupting capping of severed filaments in vitro and reducing rates of actin turnover in vivo. We propose a model for balanced regulation of actin cable turnover, in which Aip1 and cofilin function together to "prune" tropomyosin-decorated cables along their lengths. Consistent with this model, deletion of AIP1 rescues the temperature-sensitive growth and loss of actin cable defects of tpm1Delta mutants. 相似文献
8.
Background
Hyperglycemia following solid organ transplant is common among patients without pre-existing diabetes mellitus (DM). Post-transplant hyperglycemia can occur once or multiple times, which if continued, causes new-onset diabetes after transplantation (NODAT).Objective
To study if the first and recurrent incidence of hyperglycemia are affected differently by immunosuppressive regimens, demographic and medical-related risk factors, and inpatient hyperglycemic conditions (i.e., an emphasis on the time course of post-transplant complications).Methods
We conducted a retrospective analysis of 407 patients who underwent kidney transplantation at Mayo Clinic Arizona. Among these, there were 292 patients with no signs of DM prior to transplant. For this category of patients, we evaluated the impact of (1) immunosuppressive drugs (e.g., tacrolimus, sirolimus, and steroid), (2) demographic and medical-related risk factors, and (3) inpatient hyperglycemic conditions on the first and recurrent incidence of hyperglycemia in one year post-transplant. We employed two versions of Cox regression analyses: (1) a time-dependent model to analyze the recurrent cases of hyperglycemia and (2) a time-independent model to analyze the first incidence of hyperglycemia.Results
Age (P = 0.018), HDL cholesterol (P = 0.010), and the average trough level of tacrolimus (P<0.0001) are significant risk factors associated with the first incidence of hyperglycemia, while age (P<0.0001), non-White race (P = 0.002), BMI (P = 0.002), HDL cholesterol (P = 0.003), uric acid (P = 0.012), and using steroid (P = 0.007) are the significant risk factors for the recurrent cases of hyperglycemia.Discussion
This study draws attention to the importance of analyzing the risk factors associated with a disease (specially a chronic one) with respect to both its first and recurrent incidence, as well as carefully differentiating these two perspectives: a fact that is currently overlooked in the literature. 相似文献9.
Divya Vishwanath Harini Srinivasan Manjunath S. Patil Sowmya Seetarama Sachin Kumar Agrawal M. N. Dixit Kakali Dhar 《Journal of cell communication and signaling》2013,7(2):129-140
Adipocytes play a vital role in glucose metabolism. 3T3 L1 pre adipocytes after differentiation to adipocytes serve as excellent in vitro models and are useful tools in understanding the glucose metabolism. The traditional approaches adopted in pre adipocyte differentiation are lengthy exercises involving the usage of IBMX and Dexamethasone. Any effort to shorten the time of differentiation and quality expression of functional differentiation in 3T3 L1 cells in terms of enhanced Insulin sensitivity has an advantage in the drug discovery process. Thus, there is a need to develop a new effective method of differentiating the pre adipocytes to adipocytes and to use such methods for developing efficacious therapeutic molecules. We observed that a combination of Dexamethasone and Troglitazone generated differentiated adipocytes over fewer days as compared to the combination of IBMX and Dexamethasone which constitutes the standard protocol followed in our laboratory. The experiments conducted to compare the quality of differentiation yielded by various differentiating agents indicated that the lipid droplet accumulation increased by 112 % and the GLUT4 mediated glucose uptake by 137 % in cells differentiated with Troglitazone and Dexamethasone than in cells differentiated traditionally. The comparative studies conducted for evaluating efficient measurable glucose uptake by GOPOD assay, radioactive 3H-2-deoxy-D-glucose assay and by non-radioactive 6-NBDG (fluorescent analog of glucose) indicated that the non-radioactive method using 6-NBDG showed a higher signal to noise ratio than the conventional indirect glucose uptake method (GOPOD assay) and the radioactive 3H-2-deoxy-D-glucose uptake method. Differentiated 3T3 L1 cells when triggered with 2.5 ng/mL of Insulin showed 3.3 fold more glucose uptake in non-radioactive method over the radioactive 3H-2-deoxy-D-glucose uptake method. The results of this study have suggested that a combination of Dexamethasone and Troglitazone for 3T3 L1 cell differentiation helps in better quality differentiation over a short period of time with increased sensitivity to Insulin. The application of these findings for developing new methods of screening novel Insulin mimetics and for evaluating the immunological responses has been discussed. 相似文献
10.