首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1556篇
  免费   103篇
  1659篇
  2022年   7篇
  2021年   19篇
  2020年   6篇
  2019年   8篇
  2018年   18篇
  2017年   12篇
  2016年   23篇
  2015年   37篇
  2014年   42篇
  2013年   69篇
  2012年   84篇
  2011年   86篇
  2010年   38篇
  2009年   36篇
  2008年   76篇
  2007年   86篇
  2006年   83篇
  2005年   78篇
  2004年   89篇
  2003年   70篇
  2002年   67篇
  2001年   56篇
  2000年   69篇
  1999年   51篇
  1998年   20篇
  1997年   21篇
  1996年   20篇
  1995年   17篇
  1994年   17篇
  1993年   15篇
  1992年   25篇
  1991年   26篇
  1990年   23篇
  1989年   29篇
  1988年   33篇
  1987年   31篇
  1986年   25篇
  1985年   15篇
  1984年   17篇
  1983年   7篇
  1982年   19篇
  1981年   13篇
  1980年   4篇
  1979年   16篇
  1978年   6篇
  1977年   6篇
  1974年   4篇
  1973年   7篇
  1968年   6篇
  1966年   5篇
排序方式: 共有1659条查询结果,搜索用时 15 毫秒
1.
Several modification of the arrangements of α-helical molecules were found in the solid films of poly (γ-ethyl-L -glutamate), depending on the casting solvent and the temperature. The helical conformation is somewhat looser than the normal 18-residue, 5-turn α-helix. Using x-ray diffraction, the types of molecular arrangements were classified into tetragonal, pseudohexagonal, and hexagonal ones. Tetragonal packing was observed in the filmm (form T) prepared by casting the solution in trifluorethanol or dichlorethane. The sample obtained from chloroform solution is a well-ordered, pseudohexagonal modification (form I). Forms I and T change into a poorly crystalline form III by annealing at temperatures above 130° C. It is particularly noteworthy that the less-ordered form III exhibits a thermoreversible transition around 110°C into a well-ordered form H with the hexagonal molecular packing.  相似文献   
2.
Human T-lymphoblastoid cell lines RPMI 8402, MOLT-3, and CCRF-CEM were treated with interferon (IFN) to determine if the treatment would result in the disappearance of cellular terminaldeoxynucleotidyltransferase (TdT), a possible differentiation marker for T-lymphocytes. Incubation of RPMI 8402 cells in the presence of IFN preparation caused a decrease in the number of TdT-positive cells and in TdT activity of the cell extract. The inhibition of cell multiplication was dose dependent. The anticellular effect of IFN preparation was cytostatic, not cytocidal. The IFN preparation modified neither the TdT content nor proliferation of MOLT-3 and CCRF-CEM cell lines. The effects of IFN preparation thus varied with the cell line.  相似文献   
3.
The viable whole cells of Saccharomyces cerevisiae X2180-1A wild type and its mannan mutant strain S. cerevisiae X2180-1A-5, were treated with an Arthrobacter sp. beta-1,3-glucanase in the presence of a serine protease inhibitor, phenyl-methylsulfonyl fluoride. Fractionation of the solubilized materials of each strain with Cetavlon (cetyltrimethylammonium bromide) yielded one mannan-protein complex. Molecular weights of these complexes were almost the same as that of the mannoprotein of the mutant strain prepared by Nakajima and Ballou, which had a molecular weight of 133,000 and were approximately three times larger than those of the mannans isolated from the same cells by hot-water extraction. Each mannan-protein complex contained up to 2% glucose residue, which was not removed by specific precipitation with anti-mannan sera or by affinity chromatography on a column of concanavalin A-Sepharose. Treatment of these complexes with alkaline NaBH4 produced peptide-free mannan containing small amounts of glucose nearly identical to those of the parent complexes. The above findings provide evidence that the glucose residues exist in a covalently linked form to the mannan moiety. Fractionation of the mannan-protein complex of the S. cerevisiae wild-type strain by DEAE-Sephadex chromatography yielded five subfractions of different phosphate content, indicating that these highly intact mannan-protein complexes were of heterogeneous material consisting of many molecular species of different phosphate content.  相似文献   
4.
We have investigated the effects of hormones and serum on glycosaminoglycan (GAG) synthesis, using cultured rat chondrocytes isolated from growing cartilage. Somatomedin A stimulated GAG synthesis at a physiological concentration, however in the case of insulin the dose required to stimulate GAG synthesis was 500 times as great as the physiological concentration. Parathyroid hormone also increased GAG synthesis. In contrast, hydrocortisone inhibited GAG synthesis at a pharmacological dosage. None of the following had any effect on GAG synthesis: epidermal growth factor, fibroblast growth factor, triiodothyronine, growth hormone, sex steroid or vitamin D3. Human serum up to a concentration of 1% stimulated GAG synthesis. Serum from patients with acromegaly stimulated GAG synthesis more than that from those with hypopituitarism.  相似文献   
5.
Distribution of platelet activating factor (PAF) receptor was examined in the guinea pig kidney. Northern blot analysis showed a single band electrophoresed just below the 28S rRNA, and the mRNA was richest in the cortex with lesser amounts in the outer and then inner medulla. Scatchard analysis of membrane fraction using [3H]WEB 2086, a specific PAF receptor antagonist, revealed a single binding site with Bmax of 522, 228, 58 fmol/mg protein for the cortex, outer medulla and inner medulla, respectively. Kd values were in the same order of magnitude (10(-8) M). These results indicate the presence of a single class of PAF receptor in the guinea pig kidney which is most abundant in the cortex.  相似文献   
6.
We have studied the mechanisms of angiotensin II (A-II) transport through a cultured arterial endothelial cell monolayer. The transport of 125I-labeled A-II was inhibited by excess unlabeled A-II (50 microM) and [Sar1, Ile8]-A-II (50 microM), but was not inhibited by bradykinin (50 microM). The transport process was shown to be temperature dependent and was inhibited by 10 mM NaN3 plus 50 mM 2-deoxyglucose. Monensin (50 microM), an inhibitor of endocytotic trafficking, reduced the rate of transport of 125I-A-II. It is also shown that the specific pathway for A-II transport was unidirectional from the apical to the basolateral surface of the endothelial cell monolayer.  相似文献   
7.
Chloroplasts are believed to be descendants of ancestral cyanobacteria that had peptidoglycan layer between the outer and the inner membranes. Historically, the glaucophyte Cyanophora paradoxa and the rhizopod Paulinella chromatophora were believed to harbor symbiotic cyanobacteria having peptidoglycan, which were conventionally named “cyanelles”. In addition, the complete set of genes involved in the synthesis of peptidoglycan has been found in the moss Physcomitrella patens and some plants and algae. The presence of peptidoglycan-like structures was demonstrated by a new metabolic labeling technique in P. patens. However, many green algae and all known red algae lack peptidoglycan-related genes. That is the reason why we questioned the origin of peptidoglycan-synthesizing enzymes in the chloroplasts of the green algae and plants. We performed phylogenetic analysis of ten enzymes involved in the synthesis of peptidoglycan exploiting the Gclust homolog clusters and additional genomic data. As expected, all the identified genes encoded in the chromatophore genome of P. chromatophora were closely related to cyanobacterial homologs. In the green algae and plants, only two genes, murA and mraY, were found to be closely related to cyanobacterial homologs. The origins of all other genes were diverse. Unfortunately, the origins of C. paradoxa genes were not clearly determined because of incompleteness of published genomic data. We discuss on the probable evolutionary scenarios to explain the mostly non-cyanobacterial origins of the biosynthetic enzymes of chloroplast peptidoglycan: A plausible one includes extensive multiple horizontal gene transfers during the early evolution of Viridiplantae.  相似文献   
8.
Oxygen consumption (respiration activity) has been found to be the most remarkable criterion for determining the viability of an embryo produced in vitro. In this study, we propose an accurate, simple, and user-friendly device for measurement of the oxygen consumption of single mammalian embryos. An integrated electrode array was fabricated to determine the oxygen consumption of a single embryo, including the blastocyst stage, which has an inhomogeneous oxygen consumption rate, using a single measurement procedure. A single mouse embryo was positioned in a microwell at the center of an integrated electrode array, using a mouthpiece pipette, and immobilized by a cylindrical micropit with good reproducibility. The oxygen consumption of two-cell, morula, and blastocyst stages was measured amperometrically using the device. The recorded current profile was corrected to take into consideration transient background current during the measurement. A calculation method for oxygen consumption based on spherical diffusion centered on the defined point of the device was developed. This procedure is quite simple because it is not necessary to estimate the radius of the embryo being measured. The calculated values of oxygen consumption for two-cell, morula, and blastocyst stages were 1.36 ± 0.33 × 10−15 mol s−1, 1.38 ± 0.58 × 10−15 mol s−1, and 3.44 ± 2.07 × 10−15 mol s−1, respectively. The increasing pattern of oxygen consumption from morula to blastocyst agreed well with measurements obtained using conventional scanning electrochemical microscopy (SECM).  相似文献   
9.
We isolated a protein, from a cell line of human origin, which exhibits extensive differentiation inducing activity toward Friend leukemia cells. The protein, called Erythroid Differentiation Factor (EDF), was found in a 4 day culture of THP-1 cells performed in the presence of 4 beta-phorbol 12-myristate 13-acetate(PMA). EDF is a homodimer of a molecular weight of 25,000, with an NH2-terminal sequence identical to that of the beta A-chain of porcine Inhibin. It was suggested that a single protein species is responsible for the activities of both EDF and FRP, a FSH releasing protein isolated from porcine ovarian follicular fluid.  相似文献   
10.

Background

Apolipoprotein E (apoE) is a major carrier of cholesterol and essential for synaptic plasticity. In brain, it’s expressed by many cells but highly expressed by the choroid plexus and the predominant apolipoprotein in cerebrospinal fluid (CSF). The role of apoE in the CSF is unclear. Recently, the glymphatic system was described as a clearance system whereby CSF and ISF (interstitial fluid) is exchanged via the peri-arterial space and convective flow of ISF clearance is mediated by aquaporin 4 (AQP4), a water channel. We reasoned that this system also serves to distribute essential molecules in CSF into brain. The aim was to establish whether apoE in CSF, secreted by the choroid plexus, is distributed into brain, and whether this distribution pattern was altered by sleep deprivation.

Methods

We used fluorescently labeled lipidated apoE isoforms, lenti-apoE3 delivered to the choroid plexus, immunohistochemistry to map apoE brain distribution, immunolabeled cells and proteins in brain, Western blot analysis and ELISA to determine apoE levels and radiolabeled molecules to quantify CSF inflow into brain and brain clearance in mice. Data were statistically analyzed using ANOVA or Student’s t- test.

Results

We show that the glymphatic fluid transporting system contributes to the delivery of choroid plexus/CSF-derived human apoE to neurons. CSF-delivered human apoE entered brain via the perivascular space of penetrating arteries and flows radially around arteries, but not veins, in an isoform specific manner (apoE2?>?apoE3?>?apoE4). Flow of apoE around arteries was facilitated by AQP4, a characteristic feature of the glymphatic system. ApoE3, delivered by lentivirus to the choroid plexus and ependymal layer but not to the parenchymal cells, was present in the CSF, penetrating arteries and neurons. The inflow of CSF, which contains apoE, into brain and its clearance from the interstitium were severely suppressed by sleep deprivation compared to the sleep state.

Conclusions

Thus, choroid plexus/CSF provides an additional source of apoE and the glymphatic fluid transporting system delivers it to brain via the periarterial space. By implication, failure in this essential physiological role of the glymphatic fluid flow and ISF clearance may also contribute to apoE isoform-specific disorders in the long term.
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号