首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   760篇
  免费   54篇
  国内免费   1篇
  815篇
  2024年   3篇
  2023年   7篇
  2022年   34篇
  2021年   35篇
  2020年   44篇
  2019年   87篇
  2018年   47篇
  2017年   30篇
  2016年   38篇
  2015年   33篇
  2014年   56篇
  2013年   86篇
  2012年   65篇
  2011年   68篇
  2010年   35篇
  2009年   30篇
  2008年   25篇
  2007年   22篇
  2006年   20篇
  2005年   8篇
  2004年   6篇
  2003年   6篇
  2002年   6篇
  2001年   2篇
  2000年   2篇
  1999年   2篇
  1997年   4篇
  1996年   2篇
  1995年   2篇
  1993年   2篇
  1991年   2篇
  1990年   1篇
  1989年   1篇
  1986年   1篇
  1976年   1篇
  1973年   2篇
排序方式: 共有815条查询结果,搜索用时 0 毫秒
1.
Computational tools occupy the prime position in the analysis of large volume of post-genomic data. These tools have advantage over the wet lab experiments in terms of high coverage, cost and time. Breast cancer is the most common cancer in females worldwide. It is a genetically heterogeneous disorder and many genes are involved in the pathway of the disease. Mutations in metastasis suppressor gene are the major cause of the disease. In this study, the effects of mutations in breast cancer metastasis suppressor 1gene upon protein structure and function were examined by means of computational tools and information from databases.This study can be useful to predict the potential effect of every allelic variant, devise new biological experiments and to interpret and predict the patho-physiological impact of new mutations or non-synonymous polymorphisms.  相似文献   
2.
Papillomavirus-like particles (VLPs) based on L1 capsid protein represent a promising prophylactic vaccine against human papillomavirus (HPV) infections. However, cell-mediated immune responses against this antigen are believed to be of limited therapeutic value in established HPV-infected cervical lesions and, for this reason, have not been intensively investigated in cervical cancer patients. In this study we analyzed and quantified by real-time PCR (RT-PCR) the RNA expression levels of E6, E7, and L1 genes in flash-frozen HPV-16 cervical carcinomas. In addition, the kinetics of expression of E6, E7, and L1 in HPV-16-infected primary cell lines established as long-term cultures in vitro was also evaluated at RNA and protein levels. Finally, in order to evaluate the therapeutic potential of L1-specific CD4+ and CD8+ T lymphocytes responses in cervical cancer patients, L1 VLP-loaded dendritic cells (DCs) were used to stimulate peripheral blood lymphocytes from cervical cancer patients and such responses were compared to those elicited by the E7 oncoprotein. We show that 22 of 22 (100%) flash-frozen cervical biopsy samples collected from HPV-16-positive cervical cancer patients harbor L1, in addition to E6 and E7 RNA, as detected by RT-PCR. E7 RNA copy number (mean, 176.2) was significantly higher in HPV-16-positive cervical cancers compared to the E6 RNA copy number (mean, 47.3) and the L1 copy number (mean, 58.3) (P < 0.0001 and P < 0.001, respectively). However, no significant differences in expression levels between E6 and L1 were found. Kinetic studies of E6, E7, and L1 RNA and protein expression levels in primary tumors showed a sharp reduction in L1 expression after multiple in vitro passages compared to E6 and E7. Autologous DCs pulsed with HPV-16 VLPs or recombinant full-length E7 elicited strong type 1 L1- and E7-specific responses in CD4+ and CD8+ T cells from cervical cancer patients. Importantly, L1 VLP-specific CD8+ T lymphocytes expressed strong cytolytic activity against autologous tumor cells and were as effective as E7-specific cytotoxic T lymphocytes in lysing naturally HPV-16-infected autologous tumor cells. Taken together, these data demonstrate a consistent expression of L1 in primary cervical tumors and the possibility of inducing effective L1/tumor-specific CD4+ and CD8+ T-lymphocyte responses in patients harboring HPV-infected cervical cancer. These results may have important implications for the treatment of patients harboring established HPV-infected lesions with L1 VLPs or combined E7/L1 DC-based vaccinations.Human papillomavirus (HPV) infection represents the most important risk factor for the development of cervical cancer. Although more than 100 distinct HPV genotypes have been described, and at least 20 are associated with cervical cancer, HPV type 16 (HPV-16) is by far the most frequently detected in cervical neoplasia regardless of the geographical origin of the patients (4). In the last few years significant advances have been made in the development of candidate prophylactic vaccine against cervical cancer and HPV-related infections. In several large prospective randomized studies, virus-like particles consisting of the HPV-16 and HPV-18 major capsid protein L1 (L1-VLPs) have shown promise in protecting young healthy females against persistent infection with HPV-16 and HPV-18 and their associated cervical intraepithelial neoplasia (reviewed in reference 12). These data strongly suggest that the implementation of large-scale L1-VLP-based prophylactic vaccinations have the potential to dramatically reduce worldwide cervical cancer rates in the years to come.Unfortunately, because HPV infection is endemic in humans and there is a long latency from HPV infection to the development of invasive cervical cancer in women, even if prophylactic L1-based vaccinations are implemented on a worldwide scale today it would take decades to perceive any significant benefit. Consistent with this view, an estimated 5 million cervical cancer deaths will occur in the next 20 years due to existing HPV infections (4, 12). Thus, the current development of therapeutic vaccines for protection against persistent HPV infections, cervical cancer, and its precursor lesions remains an area of great interest.Although the interactions between the host immune system and HPV-infected cells are still not completely understood, several lines of evidence suggest that protection against HPV-related infections by L1-VLP-based vaccines is likely conferred by the generation of high levels of neutralizing antibodies (12, 38). Nevertheless, a potential crucial role of L1-specific T-cell responses and the involvement of T cells in mediating the production of neutralizing antibodies and antiviral effect in infected hosts has been previously hypothesized (8, 24). This point may be particularly noteworthy in patients harboring HPV-infected cervical lesions because several studies have demonstrated the critical importance of both cytotoxic (CD8+) and helper (CD4+) T cells in achieving clinical responses (1, 5, 16-18, 20, 23). However, limited information is currently available to evaluate whether cell-mediated immune responses to L1-VLP may have any significant therapeutic effect in cervical cancer patients harboring HPV-16 positive tumors. Furthermore, to our knowledge, no direct comparison of the therapeutic efficacy of L1 and E7-specific immune responses against naturally HPV-16-infected cervical cancer have been yet reported in human patients.In the present study we have analyzed and quantified by highly sensitive real-time PCR (RT-PCR) the RNA levels of E6, E7, and L1 in flash-frozen biopsy specimens obtained from HPV-16-infected cervical carcinomas and in short- and long-term primary cultures of HPV-16-positive cervical tumors. In addition, we have studied the kinetics of expression of these genes and proteins during the establishment of HPV-16-positive primary tumors in vitro. Finally, using completely autologous systems of naturally infected HPV-16-positive human tumors, we have carefully studied the phenotype and function of L1-specific CD4+ and CD8+ T-lymphocyte responses generated by VLP-loaded dendritic cells (DCs) and compared their therapeutic potential to those elicited by DC loaded with the E7 oncoprotein.  相似文献   
3.
The present study was aimed at investigating the relationship between the new Clermont’s phylogenetic groups, virulence factors, and pathogenicity island markers (PAIs) among uropathogenic Escherichia coli (UPEC) in Iran. This cross-sectional study was carried out on 140 UPEC isolates collected from patients with urinary tract infections in Bushehr, Iran. All isolates were subjected to phylogenetic typing using a new quadruplex-PCR method. The presence of PAI markers and virulence factors in UPEC strains was evaluated by multiplex PCR. The most predominant virulence gene was fimH (85%), followed by iucC (61.4%), papC (38.6%), hlyA (22.1%), cnf-1 (18.6%), afa (10.7%), papG and neuC (each 9.3%), ibeA (3.6%), and sfa/foc (0.7%). The most common phylogenetic group was related to B2 (39.3%), and the least common to A (0.7%). The most prevalent PAI marker was PAI IV536 (77.14%), while markers for PAI III536 (13.57%), PAI IIJ96 (12.86%), and PAI II536 (12.14%) were the least frequent among the UPEC strains. Meanwhile, the PAI IJ96 marker was not detected. There was a significant association between the phylogenetic group B2 and all the studied virulence genes and PAI markers. To our knowledge, this is the first study to compare the relationship between new phylogenetic groups, virulence genes and PAI markers in UPEC strains in Iran. The phylogenetic group B2 was predominantly represented among the studied virulence genes and PAI markers, indicating the preference of particular strains to carry virulence genes.  相似文献   
4.
5.
Ionizing radiation plays a central role in several medical and industrial purposes. In spite of the beneficial effects of ionizing radiation, there are some concerns related to accidental exposure that could pose a threat to the lives of exposed people. This issue is also very critical for triage of injured people in a possible terror event or nuclear disaster. The most common side effects of ionizing radiation are experienced in cancer patients who had undergone radiotherapy. For complete eradication of tumors, there is a need for high doses of ionizing radiation. However, these high doses lead to severe toxicities in adjacent organs. Management of normal tissue toxicity may be achieved via modulation of radiation responses in both normal and malignant cells. It has been suggested that treatment of patients with some adjuvant agents may be useful for amelioration of radiation toxicity or sensitization of tumor cells. However, there are always some concerns for possible severe toxicities and protection of tumor cells, which in turn affect radiotherapy outcomes. Selenium is a trace element in the body that has shown potent antioxidant and radioprotective effects for many years. Selenium can potently stimulate antioxidant defense of cells, especially via upregulation of glutathione (GSH) level and glutathione peroxidase activity. Some studies in recent years have shown that selenium is able to mitigate radiation toxicity when administered after exposure. These studies suggest that selenium may be a useful radiomitigator for an accidental radiation event. Molecular and cellular studies have revealed that selenium protects different normal cells against radiation, while it may sensitize tumor cells. These differential effects of selenium have also been revealed in some clinical studies. In the present study, we aimed to review the radiomitigative and radioprotective effects of selenium on normal cells/tissues, as well as its radiosensitive effect on cancer cells.  相似文献   
6.
The effects of experimental parameters including soil type, curing duration, inoculum size, and biomass and nutrients concentration on soil strengthening due to calcite precipitation by Sporosarcina pasteurii PTCC 1645 were investigated. The laboratory-scale mixing experiments on remolded samples were designed by the Taguchi method. Soil type proved to be the most incorporating factor, followed by curing time and nutrient concentration. The main effect and the interactions of the parameters were presented and the optimal conditions were obtained. This suggests the importance of local conditions including soil type on any future large-scale, in situ application.  相似文献   
7.
8.
Present study investigates relationships between total and bioaccessibility of trace elements (Cd, Co, Cr, Cu, Mn, NI, Pb, V, and Zn) concentrations in sediment and their bioaccumulation in species in Shadegan wetland in southwest of Iran. Bioavailability factor (BAF) and translocation factor (TF) were calculated in plants and trophic transfer factor (TTF) was determined in bird species. For this purpose, sampling of sediments, aquatic plants including Phragmites australis, Typha australis, Scripus maritimus and two bird species encircling Porphyrio porphyrio and globally threatened Marmaronetta angustirostris were carried out during winter 2009. Result of chemical analysis show that bioaccessibility concentrations of Mn (8.31 mg/kg), V (1.33 mg/kg), and Pb (1.03 mg/kg) are higher than other metals. The uptake trend of trace elements in plant decreases as root > stem > leaf. Accumulation levels of trace elements in different tissues of P. porphyrio and M. angustirostris are almost identical and considerable. Accumulation and toxicity of Cd in birds is more than plants. In addition, BAF of V, Pb, and Cr indicates high accumulation by plants and great pollution rate in the area of study. In S. maritimus TF for Mn, Cu, Pb, and V are high whereas in T. australis, Cu and Pb posses the highest TF. Also Cr, Co, Mn, Ni, and Zn have higher TF from stem to leaf than root to stem in P. australis. Finally, TTFs were compared in various bird species.  相似文献   
9.
Little is known about the genetics of nonsyndromic intellectual disability (NSID). We hypothesized that de novo mutations (DNMs) in synaptic genes explain an important fraction of sporadic NSID cases. In order to investigate this possibility, we sequenced 197 genes encoding glutamate receptors and a large subset of their known interacting proteins in 95 sporadic cases of NSID. We found 11 DNMs, including ten potentially deleterious mutations (three nonsense, two splicing, one frameshift, four missense) and one neutral mutation (silent) in eight different genes. Calculation of point-substitution DNM rates per functional and neutral site showed significant excess of functional DNMs compared to neutral ones. De novo truncating and/or splicing mutations in SYNGAP1, STXBP1, and SHANK3 were found in six patients and are likely to be pathogenic. De novo missense mutations were found in KIF1A, GRIN1, CACNG2, and EPB41L1. Functional studies showed that all these missense mutations affect protein function in cell culture systems, suggesting that they may be pathogenic. Sequencing these four genes in 50 additional sporadic cases of NSID identified a second DNM in GRIN1 (c.1679_1681dup/p.Ser560dup). This mutation also affects protein function, consistent with structural predictions. None of these mutations or any other DNMs were identified in these genes in 285 healthy controls. This study highlights the importance of the glutamate receptor complexes in NSID and further supports the role of DNMs in this disorder.  相似文献   
10.
The Asmari Formation, a thick carbonate succession of the Oligo-Miocene in Zagros Mountains (southwest Iran), has been studied to determine its microfacies, paleoenvironments and sedimentary sequences. Detailed petrographic analysis of the deposits led to the recognition of 10 microfacies types. In addition, five major depositional environments were identified in the Asmari Formation. These include tidal flat, shelf lagoon, shoal, slope and basin environmental settings and are interpreted as a carbonate platform developed in an open shelf situation but without effective barriers separating the platform from the open ocean. The Asmari carbonate succession consists of four, thick shallowing-upward sequences (third-order cycles). No major hiatuses were recognized between these cycles. Therefore, the contacts are interpreted as SB2 sequence boundary types. The Pabdeh Formation, the deeper marine facies equivalent of the Asmari Limestone is interpreted to be deposited in an outer slope-basin environment. The microfacies of the Pabdeh Formation shows similarities to the Asmari Formation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号