首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   73篇
  免费   4篇
  2022年   1篇
  2021年   3篇
  2020年   2篇
  2019年   6篇
  2018年   2篇
  2017年   3篇
  2016年   2篇
  2015年   7篇
  2014年   1篇
  2013年   4篇
  2012年   5篇
  2011年   6篇
  2010年   4篇
  2009年   2篇
  2008年   8篇
  2007年   2篇
  2006年   2篇
  2005年   5篇
  2004年   3篇
  2003年   3篇
  1992年   1篇
  1975年   5篇
排序方式: 共有77条查询结果,搜索用时 706 毫秒
1.
Chondrocytes dedifferentiate during ex vivo expansion on 2-dimensional surfaces. Aggregation of the expanded cells into 3-dimensional pellets, in the presence of induction factors, facilitates their redifferentiation and restoration of the chondrogenic phenotype. Typically 1×105–5×105 chondrocytes are aggregated, resulting in “macro” pellets having diameters ranging from 1–2 mm. These macropellets are commonly used to study redifferentiation, and recently macropellets of autologous chondrocytes have been implanted directly into articular cartilage defects to facilitate their repair. However, diffusion of metabolites over the 1–2 mm pellet length-scales is inefficient, resulting in radial tissue heterogeneity. Herein we demonstrate that the aggregation of 2×105 human chondrocytes into micropellets of 166 cells each, rather than into larger single macropellets, enhances chondrogenic redifferentiation. In this study, we describe the development of a cost effective fabrication strategy to manufacture a microwell surface for the large-scale production of micropellets. The thousands of micropellets were manufactured using the microwell platform, which is an array of 360×360 µm microwells cast into polydimethylsiloxane (PDMS), that has been surface modified with an electrostatic multilayer of hyaluronic acid and chitosan to enhance micropellet formation. Such surface modification was essential to prevent chondrocyte spreading on the PDMS. Sulfated glycosaminoglycan (sGAG) production and collagen II gene expression in chondrocyte micropellets increased significantly relative to macropellet controls, and redifferentiation was enhanced in both macro and micropellets with the provision of a hypoxic atmosphere (2% O2). Once micropellet formation had been optimized, we demonstrated that micropellets could be assembled into larger cartilage tissues. Our results indicate that micropellet amalgamation efficiency is inversely related to the time cultured as discreet microtissues. In summary, we describe a micropellet production platform that represents an efficient tool for studying chondrocyte redifferentiation and demonstrate that the micropellets could be assembled into larger tissues, potentially useful in cartilage defect repair.  相似文献   
2.
International Journal of Biometeorology - Epidemiological studies have suggested an association between particulate air pollution, increased temperatures, and morbidity related to pregnancy...  相似文献   
3.
Russian Journal of Bioorganic Chemistry - The anthocyanin composition of five purple leaves cultivars of Ocimum basilicum L. was investigated by reversed-phase HPLC with mass-spectrometric...  相似文献   
4.
5.
The aim of the study was to investigate the effects of zinc deficiency and supplementation on lipid peroxidation and glutathione levels in blood and in some tissues of rats performing swimming exercise. Forty adult male Sprague-Dawley rats were divided into four groups: group 1, zinc-deficient consisted of swimming rats; group 2 consisted of zinc-supplemented swimming rats; groups 3 and 4 were the swimming and nonswimming controls, respectively. The levels of malondialdehyde and glutathione were measured after 4 wk of zinc-deficient or zinc-supplemented diet and 30 min of swimming exercise daily. The erythrocyte glutathione levels of groups 2 and 4 were significantly higher than those of groups 1 and 3 (p<0.01). The plasma malondialdehyde level of group 1 was significantly higher than all other groups. The glutathione levels in liver, kidney, striated muscle, and testes of group 2 were higher than in the other groups (p<0.01) and higher in kidney and striated muscle of group 3 than in groups 1 and 4 (p<0.01). The tissue malondialdehyde levels of striated muscle, liver, kidney, and testes of group 1 were significantly higher than for all other groups (p<0.01). Our findings suggest that both swimming exercise and zinc deficiency result in an increase of lipid peroxidation in tissues and that zinc supplementation prevents these alterations by the activation of the antioxidant system.  相似文献   
6.
Large numbers of Mesenchymal stem/stromal cells (MSCs) are required for clinical relevant doses to treat a number of diseases. To economically manufacture these MSCs, an automated bioreactor system will be required. Herein we describe the development of a scalable closed-system, packed bed bioreactor suitable for large-scale MSCs expansion. The packed bed was formed from fused polystyrene pellets that were air plasma treated to endow them with a surface chemistry similar to traditional tissue culture plastic. The packed bed was encased within a gas permeable shell to decouple the medium nutrient supply and gas exchange. This enabled a significant reduction in medium flow rates, thus reducing shear and even facilitating single pass medium exchange. The system was optimised in a small-scale bioreactor format (160 cm2) with murine-derived green fluorescent protein-expressing MSCs, and then scaled-up to a 2800 cm2 format. We demonstrated that placental derived MSCs could be isolated directly within the bioreactor and subsequently expanded. Our results demonstrate that the closed system large-scale packed bed bioreactor is an effective and scalable tool for large-scale isolation and expansion of MSCs.  相似文献   
7.
During shock, prognosis of a patient depends largely on intestinal barrier function. The potency of gut epithelium to represent an obstacle to toxins is determined by the blood supply. All established methods of mucosal function determination necessitate the functional involvement of bloodstream. Microdialysis allows monitoring of extracellular substances in the gut submucosa, but its potential use for gut barrier integrity assessment is unknown. Twelve rats underwent perfusion of the descending colon either with 20 % ethanol or control medium (vehicle). Both media contained equal amounts of a radioactive tracer substance ((51)Cr-EDTA). Mucosal permeability for (51)Cr-EDTA was assessed by microdialysate to luminal perfusate activity ratios. Sampling was performed using the colon submucosal microdialysis technique. The group subjected to ethanol treatment had profound macro- and microscopical alterations in perfused colonic segment associated with a significant increase in tracer permeability during ethanol exposure (2.354+/-0.298 % for ethanol as opposed to 0.209+/-0.102 % for control group, p 0.01), which remained elevated for 60 min after cessation of ethanol administration (3.352+/-0.188 % for ethanol compared to 0.140+/-0.0838 % for the control group, p 0.001). Submucosal microdialysis with radioactive tracer substance can be considered a feasible and advantageous alternative of gut barrier function estimation. Parallel monitoring of local tissue chemistry with this method remains a challenge in the future.  相似文献   
8.
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号