首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   350篇
  免费   13篇
  363篇
  2019年   7篇
  2018年   3篇
  2017年   8篇
  2016年   5篇
  2015年   10篇
  2014年   16篇
  2013年   18篇
  2012年   16篇
  2011年   24篇
  2010年   11篇
  2009年   11篇
  2008年   17篇
  2007年   25篇
  2006年   17篇
  2005年   23篇
  2004年   25篇
  2003年   27篇
  2002年   15篇
  2001年   5篇
  2000年   6篇
  1999年   6篇
  1998年   3篇
  1997年   4篇
  1996年   3篇
  1995年   3篇
  1994年   2篇
  1993年   2篇
  1991年   2篇
  1987年   5篇
  1984年   5篇
  1980年   4篇
  1979年   1篇
  1978年   1篇
  1977年   3篇
  1975年   1篇
  1974年   1篇
  1973年   3篇
  1972年   2篇
  1971年   1篇
  1968年   3篇
  1967年   2篇
  1966年   1篇
  1965年   1篇
  1951年   1篇
  1939年   1篇
  1857年   1篇
  1856年   1篇
  1855年   1篇
  1854年   1篇
  1853年   1篇
排序方式: 共有363条查询结果,搜索用时 15 毫秒
1.
Beckerman AP  Wieski K  Baird DJ 《Oecologia》2007,152(2):335-343
Predator-generated variation in prey energy intake remains the dominant explanation of adaptive response to predation risk in prey life history, morphology and physiology across a wide range of taxa. This "behavioural hypothesis" suggest that chemical or visual signals of predation risk reduce prey energy intake leading to a life history characterized by a small size and late age at maturity. However, size-selective predation can induce either smaller size-early age or large size-late age life history. The alternative "physiological hypothesis" suggests that size-selective cues decouple the relationship between energy and life history, acting instead directly on development. Here we use a series of experiments in a fish-daphnid predator-prey system to ask whether size-selective predator cues induce a physiological mediation of development, overshadowing behaviourally based changes in food intake. We found fish chemical cues reduce the net energy intake in Daphnia magna, suggesting a behaviourally mediated reduction in energy. Experimental manipulation of food levels show further that reductions in food lead to later but smaller size at maturity. However, in line with the physiological hypothesis, we show that D. magna matures earlier and at a smaller size when exposed to fish predation cues. Furthermore, our data shows that they do this by increasing their development rate (earlier maturity) for a given growth rate, resulting in a smaller size at maturity. Our data, from a classic size-selective predation system, indicate that predator-induced changes in this system are driven by physiological mediation of development rather than behavioural mediation of energy intake.  相似文献   
2.
Abstract

A second ecological survey of the Waikanae estuary, in the North Island of New Zealand, was carried out 30 years after the first (1941–1943), and was of similar duration. The observer for the first survey participated in the second, and the same methods were used. Brief accounts are given of the prevailing climate and geology, and of physical changes at the estuary. The effect of periodic storms and of the various encroachments by man is recorded; the latter appear to be particularly important. The vegetation of the estuary is described. Records of beach patrols and of other ornithologists supplement the authors' observations on the bird life. The numbers of birds recorded in the two surveys are compared by analyses of variance. Changes in the flora deduced from aerial photographs spanning the two surveys and from notes and photographs are related to man-induced disturbance, natural physical changes, and natural succession. The total of 79 bird species recorded at the estuary and in its immediate vicinity compares favourably with the 60 species recorded during the first survey. The increase of nearly one-third is due to such factors as the appearance of new Australian bird species, the information provided by the beach patrols, and the extension of sand-flat habitat. In terms of numbers observed, 10 bird species have increased, 11 remain unchanged, and 8 have declined. The distribution of birds is considered in relation to nine areas of habitat: the beach and open sea; open dunes at the beach front; river and sand flats; unfixed and fixed dunes; saltmarsh; grassed fields; and lakelets. The most species (29) were recorded on sand flats and the least (7) on unfixed dunes. Periodic rechannelling of the river mouth has led to expansion of the sand flats as a habitat for waders and some other shore birds, but other man-induced developments, such as housing, are threatening the present ecological balance of the estuary. Use of the area for recreation and for wildlife study is increasing, and we consider that action by conservation authorities is urgently required.  相似文献   
3.
The present study analyzes the fatty acid (FA) profile of lipids isolated from Varroa destructor Anderson & Trueman, a parasitic mite of the honey bee (Apis mellifera L.), uninfected and infected worker prepupae of the Carnolian subspecies Apis mellifera carnica Pollmann, and bee bread fed to the worker brood. Significant differences are observed in the FA profiles of lipids isolated from parasites, hosts and bee bread. Parasitism by V. destructor (henceforth, varroosis) induces visible changes in the lipid profile of worker prepupae. In infected prepupae, the percentage of total saturated FAs is lower and the percentage of unsaturated FAs is higher than in uninfected insects. These differences result from significant changes in the percentages of FAs that are most abundant in the evaluated groups (i.e. C16:0, C18:1 9c, C18:2n‐6 and C18:3n‐3 FAs). In mites and in uninfected and infected prepupae, the predominant FAs are oleic acid (41.07 ± 2.26%, 42.79 ± 1.21% and 45 ± 0.20%, respectively) and palmitic acid (22.62 ± 0.87%, 39.48 ± 0.43% and 36.84 ± 0.22%, respectively). Highly significant differences in FA composition are noted between bee bread and worker brood. The results suggest specific mechanisms of FA uptake, accumulation and metabolism in the food chain of this parasitic association, beginning from the food processed by nurse bees for larval feeding, through host organisms (worker brood) to V. destructor mites.  相似文献   
4.
The effect of cadmium and zinc ions on violaxanthin cycle enzymes, violaxanthin de-epoxidase and zeaxanthin epoxidase, has been investigated on selected plant species, as well as in vitro. About 50% inhibition of zeaxanthin epoxidase by cadmium ions was found for duckweed (Lemna trisulca) and tomato (Lycopersicon esculentum) leaves but for apricot (Prunus armeniaca) leaves no cadmium inhibition of the epoxidation reaction was observed. The cadmium inhibition of zeaxanthin epoxidase in tomato was abolished by zinc ions. Zinc ions alone did not affect the activity of neither of the enzymes of the violaxanthin cycle. This suggests that mechanism of cadmium inactivation of the enzyme relies on cadmium interaction with a cysteine residue of the protein, important for the enzyme activity. The target cysteine in tomato epoxidase could be the cysteine residue present in the most conservative part of the molecule which is not present in the apricot enzyme sequence. Neither stimulation nor inhibition of violaxanthin de-epoxidase by cadmium ions both in vivo and in vitro studies was detected. It confirms the proposed mechanism of zeaxanthin epoxidation inhibition by cadmium ions because the cysteine residue in the conservative motif of violaxathin de-epoxidase is not present.  相似文献   
5.
The effect of high temperature treatment (40 °C, 3 h, illumination at 100 μmol m− 2 s− 1) on the photosynthetic electron flow in barley seedlings of different age was investigated. Thermoinduced inhibition of the liner electron flow due to partial impairment of the water oxidizing complex (WOC) and the increase in the extent of QA reoxidation by Tyrzox in thylakoids isolated from 4-day-old leaves was shown by measurements of oxygen evolution using benzoquinone or potassium ferricyanide as electron acceptors, as well as by following QA reoxidation kinetics in the absence and presence of exogenous electron acceptors, DCBQ and DMBQ. Using HPLC analysis, an increase in the oxidation of the photoactive plastoquinone pool in young leaves under heating was shown. In older, 11-day-old leaves, heat treatment limited both photosynthetic electron flow and oxygen evolution. The same effects of heat shock on oxygen evolution caused an inhibition of electron flow on the donor side of PSII only. However, a rise in the proportion of PSII with QA reoxidized through recombination with the S2/S3 state of the WOC was observed. The addition of exogenous electron acceptors (DCBQ and DMBQ) and a donor (DPC) showed that the thermoinduced decrease in the electron transport rate was caused by an impediment of electron flow from QA to acceptor pool. The decrease in size of the photoactive PQ-pool and a change in the proportions of oxidized and reduced PQ in older leaves under heat treatment were shown. It was suggested that a thermoinduced change of the redox state of the PQ-pool and a redistribution of plastoquinone molecules between photoactive and non-photoactive pools are the mechanisms which reflect and regulate the response of the photosynthetic apparatus under heat stress conditions.  相似文献   
6.
Covalent modifications of nucleobases are thought to play an important role in regulating the functions of DNA and various cellular RNA types. Perhaps the best characterized is DNA methylation on cytosine (methyl tag attached to carbon 5 position) and such modification has also been detected in stable and long-lived RNA molecules. In this work, we propose a novel procedure enabling very sensitive quantification of methylcytidine and other ribonucleosides, based on reversed phase liquid chromatography with inductively coupled plasma mass spectrometry (ICP-MS) detection. The procedure relies on labeling ribose residues with osmium, by formation of a ternary complex between cis-diol ribose groups, hexavalent osmium (K(2)OsO(2)(OH)(4)) and tetramethylethylenediamine (TEMED). The derivatization reaction was carried out with 50?:?1 molar excess of Os to ribonucleoside, pH 4, for 2 h at room temperature. The structures of Os-labeled cytidine and methylcytidine were confirmed by electrospray ionization mass spectrometry. The separation of Os-labeled cytidine (C), uridine (U), 5-methylcytidine (5mC) and guanosine (G) was achieved on C18 column (Gemini, 150 × 3 mm, 5 μm) with isocratic elution (0.05% triethylamine + 6 mmol L(-1) ammonium acetate, pH 4.4: methanol (85?:?15)) and a total flow rate 0.6 mL min(-1). The column effluent was on-line introduced to ICP-MS (a model 7500 ce, Agilent Technologies) for specific detection at (189)Os. Calibration was performed within the concentration range 0-200 nmol L(-1) of each ribonucleoside and the analytical figures of merit were evaluated. For 100 μL injection, the detection limits for C, U, 5mC, G were 24, 38, 21 and 28 pmol L(-1), respectively. While introducing Os(vi)-TEMED to the column, it eluted in the dead volume and the detection limit for osmium was 20 pmol L(-1). The results obtained in this work might be helpful in the analysis of RNA digests, providing quantitative data on the ribonucleoside composition and RNA methylation (measured as the percentage of methylated cytidines with respect to total RNA cytidines).  相似文献   
7.
Summary During 1982 – 1991 pollen deposition in the centre of Cracow (southern Poland) was investigated using the gravimetric method. 32 taxa of the 84 identified were taken into consideration, and nearly all of them can be allergenic. The beginning of mass pollen fall was observed in the second decade of March, and the third decade of September saw the completion of the yearly cycle of abundant appearance of pollen in the aeroplankton. Tree pollen dominates quantitatively.  相似文献   
8.
Six different xanthophyll cycles have been described in photosynthetic organisms. All of them protect the photosynthetic apparatus from photodamage caused by light-induced oxidative stress. Overexcitation conditions lead, in the chloroplast, to the over-reduction of the NADP pool and production of superoxide, which can subsequently be metabolized to hydrogen peroxide or a hydroxyl radical, other reactive oxygen species (ROS). On the other hand, overexcitation of photosystems leads to an increased lifetime of the chlorophyll excited state, increasing the probability of chlorophyll triplet formation which reacts with triplet oxygen forming single oxygen, another ROS. The products of the light-dependent phase of xanthophyll cycles play an important role in the protection against oxidative stress generated not only by an excess of light but also by other ROS-generating factors such as drought, chilling, heat, senescence, or salinity stress. Four, mainly hypothetical, mechanisms explaining the protective role of xanthophyll cycles in oxidative stress are presented. One of them is the direct quenching of overexcitation by products of the light phase of xanthophyll cycles and three others are based on the indirect participation of xanthophyll cycle carotenoids in the process of photoprotection. They include: (1) indirect quenching of overexcitation by aggregation-dependent light-harvesting complexes (LHCII) quenching; (2) light-driven mechanisms in LHCII; and (3) a model based on charge transfer quenching between Chl a and Zx. Moreover, results of the studies on the antioxidant properties of xanthophyll cycle pigments in model systems are also presented.  相似文献   
9.
Heavy metal (HMs) contamination is widespread globally due to anthropogenic, technogenic, and geogenic activities. The HMs exposure could lead to multiple toxic effects in plants by inducing reactive oxygen species (ROS), which inhibit most cellular processes at various levels of metabolism. ROS being highly unstable could play dual role (1) damaging cellular components and (2) act as an important secondary messenger for inducing plant defense system. Cells are equipped with enzymatic and non-enzymatic defense mechanisms to counteract this damage. Some are constitutive and others that are activated only when a stress-specific signal is perceived. Enzymatic scavengers of ROS include superoxide dismutase, catalase, glutathione reductase, and peroxidase, while non-enzymatic antioxidants are glutathione, ascorbic acid, α-tocopherol, flavonoids, anthocyanins, carotenoids, and organic acids. The intracellular and extracellular chelation mechanisms of HMs are associated with organic acids such as citric, malic and oxalic acid, etc. The important mechanism of detoxification includes metal complexation with glutathione, amino acids, synthesis of phytochelatins and sequestration into the vacuoles. Excessive stresses induce a cascade, MAPK (mitogen-activated protein kinase) pathway and synthesis of metal-detoxifying ligands. Metal detoxification through MAPK cascade and synthesis of metal-detoxifying ligands will be of considerable interest in the field of plant biotechnology. Further, the photoprotective roles of pigments of xanthophylls cycle under HMs stress were also discussed.  相似文献   
10.
We have found that in isolated spinach thylakoids, plastoquinone-pool (PQ-pool), after its photoreduction, undergoes dark-reoxidation with the half-time of 1/2 = 43 ± 3 s. To explain the observed rates of PQ-pool reoxidation, a nonenzymatic plastoquinol (PQH2) autoxidation under molecular oxygen and an enzymatic oxidation by the low-potential form of cytochrome b-559 (cyt. b-559LP), as the postulated PQ-oxidase in chlororespiration, were investigated. It was found that the autoxidation rate of PQH2 in organic solvents and liposomes was too low to account for the observed oxidation rate of PQH2 in thylakoids. The rate of cyt. b-559LP autoxidation in isolated Photosystem II was found to be similar (1/2 = 26 ± 5 s) to that of the PQ-pool. This suggests that the LP form of cyt. b-559 is probably responsible for the PQ-oxidase activity observed during chlororespiration.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号