首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   100篇
  免费   6篇
  106篇
  2020年   1篇
  2018年   3篇
  2016年   1篇
  2015年   4篇
  2014年   5篇
  2013年   7篇
  2012年   10篇
  2011年   13篇
  2010年   9篇
  2009年   14篇
  2008年   3篇
  2007年   7篇
  2006年   1篇
  2005年   1篇
  2004年   2篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
  1996年   3篇
  1995年   2篇
  1993年   1篇
  1990年   1篇
  1989年   1篇
  1987年   1篇
  1986年   1篇
  1985年   2篇
  1976年   2篇
  1975年   1篇
  1974年   1篇
  1973年   1篇
  1972年   2篇
  1954年   1篇
  1953年   1篇
排序方式: 共有106条查询结果,搜索用时 15 毫秒
1.
2.
In this paper we estimate the European potential for carbon mitigation of no-till farming using results from European tillage experiments. Our calculations suggest some potential in terms of (a) reduced agricultural fossil fuel emissions, and (b) increased soil carbon sequestration. We estimate that 100% conversion to no-till farming would be likely to sequester about 23 Tg C y–1 in the European Union or about 43 Tg C y–1 in the wider Europe (excluding the former Soviet Union). In addition, up to 3.2 Tg C y–1 could be saved in agricultural fossil fuel emissions. Compared to estimates of the potential for carbon sequestration of other carbon mitigation options, no-till agriculture shows nearly twice the potential of scenarios whereby soils are amended with organic materials. Our calculations suggest that 100% conversion to no-till agriculture in Europe could mitigate all fossil fuel-carbon emissions from agriculture in Europe. However, this is equivalent to only about 4.1% of total anthropogenic CO2-carbon produced annually in Europe (excluding the former Soviet Union) which in turn is equivalent to about 0.8% of global annual anthropogenic CO2-carbon emissions.  相似文献   
3.
4.
Calreticulin (CRT) plays pivotal roles in Ca2+ homeostasis, molecular chaperoning, infection, inflammation and innate immunity. In an attempt to study the involvement of CRT in innate immunity, the full-length cDNA of calreticulin (PxCRT) was cloned from the diamondback moth, Plutella xylostella. It consists of 1674 bp (excluding poly-A tail) with a longest open reading frame (ORF) of 1197 bp encoding 398 amino acids. In silico analysis of PxCRT ORF reveals that it has various repeat motifs and endoplasmic reticulum retention signal found in all the calreticulin proteins. As expected, high amino acid sequence identities were found from other CRTs identified from Bombyx mori (87%), Galleria mellonella (87%), Apis mellifera (74%), Anopheles gambiae (74%), Tribolium castaneum (73%), Culex quinquefasciatus (73%), Rhodnius prolixus (72%), Nasonia vitripennis (71%), Drosophila melanogaster (71%) and Haemaphysalis qinghaiensis (68%). During development, P. xylostella expressed PxCRT predominantly in the pupal stage. In addition, spatial expression pattern analysis indicates that PxCRT was highly expressed in the silk gland. PxCRT mRNA, furthermore, was strongly induced 3 to 6 h after laminarin treatment, suggesting that PxCRT appears to be involved in immune responses and also plays an important role in the silk gland.  相似文献   
5.
Recent changes in the seasonal timing (phenology) of familiar biological events have been one of the most conspicuous signs of climate change. However, the lack of a standardized approach to analysing change has hampered assessment of consistency in such changes among different taxa and trophic levels and across freshwater, terrestrial and marine environments. We present a standardized assessment of 25 532 rates of phenological change for 726 UK terrestrial, freshwater and marine taxa. The majority of spring and summer events have advanced, and more rapidly than previously documented. Such consistency is indicative of shared large scale drivers. Furthermore, average rates of change have accelerated in a way that is consistent with observed warming trends. Less coherent patterns in some groups of organisms point to the agency of more local scale processes and multiple drivers. For the first time we show a broad scale signal of differential phenological change among trophic levels; across environments advances in timing were slowest for secondary consumers, thus heightening the potential risk of temporal mismatch in key trophic interactions. If current patterns and rates of phenological change are indicative of future trends, future climate warming may exacerbate trophic mismatching, further disrupting the functioning, persistence and resilience of many ecosystems and having a major impact on ecosystem services.  相似文献   
6.
1. The way light stress controls the recruitment of aquatic plants (phanerogams and charophytes) is a key process controlling plant biodiversity, although still poorly understood. Our aim was to investigate how light stress induced by phytoplankton, that is, independent from the aquatic plants themselves, determines the recruitment and establishment of plant species from the propagule bank. The hypotheses were that an increase in light stress (i) decreases abundance and species richness both of established aquatic plants and of propagules in the bank and (ii) decreases the recruitment success of plants from this bank. 2. These hypotheses were tested in 25 shallow lakes representing a light stress gradient, by sampling propagule banks before the recruitment phase and when the lakes are devoid of actively growing plants (i.e. at the end of winter), established vegetation at the beginning of the summer and phytoplankton biomass (chlorophyll a) during the recruitment and establishment phase. 3. The phytoplankton biomass was negatively correlated with the richness and abundance of established vegetation but was not correlated with the propagule bank (neither species richness nor propagule abundance). The similarity between the propagule bank and established vegetation decreased significantly with increasing phytoplankton biomass. 4. The contrast in species composition between the vegetation and the propagule bank at the highest light stress suggests poor recruitment from the propagule bank but prompts questions about its origin. It could result from dispersal of propagules from neighbouring systems. Propagules could also originate from a persistent propagule bank formerly produced in the lake, suggesting strong year‐to‐year variation in light stress and, as a consequence, in recruitment and reproductive success of plants.  相似文献   
7.
Blood parasites may act as modulators of their hosts' ecology, life histories and fitness. We studied the prevalence of Plasmodium sp., Haemoproteus sp. and Leucocytozoon sp. and their effects on morphological, biochemical and haematological variables and on breeding effort of Great Tits Parus major . Total prevalence (percentage of individuals infected by any parasite) ranged from 7.7% to 61.1%. There was an overall positive association in prevalence between the three haematozoan parasites. No effect of sex or age on infection status was observed. Negative impacts of infection on physiological condition depended largely on year and/or season and included effects on body condition index, plasma protein and haemoglobin index. There were also indications that parasite infection increased immune response and stress levels and activated antioxidant defence mechanisms. Males with higher fledging success had a higher probability of Haemoproteus infection, and females laying heavier eggs had a higher probability of Plasmodium infection. However, clutch size was negatively associated with the probability of infection by Leucocytozoon and Haemoproteus . Surprisingly, males raising second broods had a lower prevalence of both Haemoproteus and Leucocytozoon . Only 5.7% of first-brood nestlings were infected, but those in infected nestboxes had a lower heterophil/lymphocyte ratio. This study confirms the pathogenicity of blood parasites to the host by demonstrating negative effects of infection on both physiology and breeding performance.  相似文献   
8.
We present results from modelling studies, which suggest that, at most, only about 10–20% of recently observed soil carbon losses in England and Wales could possibly be attributable to climate warming. Further, we present reasons why the actual losses of SOC from organic soils in England and Wales might be lower than those reported.  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号