首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   462篇
  免费   54篇
  国内免费   1篇
  517篇
  2022年   3篇
  2021年   10篇
  2020年   4篇
  2019年   5篇
  2018年   12篇
  2017年   11篇
  2016年   15篇
  2015年   16篇
  2014年   16篇
  2013年   25篇
  2012年   20篇
  2011年   23篇
  2010年   22篇
  2009年   28篇
  2008年   16篇
  2007年   16篇
  2006年   22篇
  2005年   11篇
  2004年   9篇
  2003年   16篇
  2002年   12篇
  2001年   11篇
  2000年   10篇
  1999年   14篇
  1998年   9篇
  1997年   7篇
  1996年   6篇
  1995年   10篇
  1994年   4篇
  1993年   6篇
  1992年   8篇
  1991年   10篇
  1990年   3篇
  1989年   6篇
  1987年   5篇
  1986年   6篇
  1985年   7篇
  1984年   5篇
  1983年   8篇
  1982年   8篇
  1981年   10篇
  1980年   3篇
  1979年   11篇
  1978年   13篇
  1977年   6篇
  1975年   3篇
  1974年   7篇
  1973年   2篇
  1971年   1篇
  1969年   2篇
排序方式: 共有517条查询结果,搜索用时 15 毫秒
1.
2.
Summary 1. Expression of the apamin-sensitive K+ channel (SK+) in rat skeletal muscle is neurally regulated. The regulatory effect of the nerve over the expression of some muscle ion channels has been attributed to the electrical activity triggered by the nerve and/or to a trophic effect of some molecules transported from the soma to the axonal endings. 2. SK+ channels apparently are involved in myotonic dystrophy (MD), therefore understanding the factors that regulate their expression may ultimately have important clinical relevance. 3. To establish if axoplasmic transport is involved in this process, we used two experimental approaches in adult rats: (a) Both sciatic nerves were severed, leaving a short or a long nerve stump attached to the anterior tibialis (AT). (b) Colchicine or vinblastine (VBL), two axonal transport blockers of different potencies, was applied on one leg to the sciatic nerve. To determine whether electrical activity affects the expression of SK+ channels, denervated AT were directly stimulated. The corresponding contralateral muscles were used as controls. 4. With these experimental conditions we measured (a) apamin binding to muscle membranes, (b) muscle contractile characteristics, and (c) electromyographic activity. 5. In the short- and long-nerve stump experiments, 5 days after denervation125I-apamin binding to AT membranes was 2.0 times higher in the short-stump side. This difference disappeared at longer times. The delayed expression of SK+ channels in the muscle left with a longer nerve stump can be attributed to the extra axoplasm contained in the longer stump, which maintains a normally repressive signal for a longer period of time. Ten to 15 days after application of axonal transport blockers we found that the muscle half-relaxation time increased in the drug-treated side and apamin partially reverted the prolonged relaxation. Myotonic-like discharges specifically blockable by apamin were always present in the drug-treated leg.125I-Apamin binding, which is undetectable in a microsomal preparation from hind leg control muscles, was increased in the drug-treated preparations. Apamin binding to denervated and stimulated AT muscles was lower than in the contralateral unstimulated muscles [3.3±1.0 vs 6.8±0.8 (n=4) fmol/mg protein]. 6. Our results demonstrate that electrical activity and axoplasmic transport are involved in the control of expression of SK+ in rat skeletal muscle. However, the increased expression of this channel induces myotonic-like characteristics that are reversed by apamin. This myotonic activity could be a model for MD.  相似文献   
3.
The hydrolysis of [3H]inositol 1,4,5-trisphosphate by a soluble fraction and by isolated transverse tubule and sarcoplasmic reticulum membranes from frog skeletal muscle was studied. Transverse tubule membranes displayed rates of hydrolysis several-fold higher than those of sacroplasmic reticulum and soluble fraction; Km and Vmax were 25.2 microM and 44.1 nmol/mg/min, respectively. Transverse tubule membranes sequentially hydrolyzed inositol trisphosphate to inositol bisphosphate, inositol 1-phosphate and inositol, indicating that these membranes have inositol bis- and monophosphatases in addition to inositol trisphosphatase.  相似文献   
4.
Fragmentation of forest landscapes can raise the intensity of nest predation by increasing the abundance and richness of generalist or introduced predators. Understory foraging birds, such as rhinocryptids, can be highly vulnerable to nest predation in fragmented landscapes because they often place their nests on the ground. Temperate deciduous forests in Chile have been intensively fragmented in the last centuries, causing changes in nest predator densities. We tested if predation of artificial nests, mimicking those of rhinocryptids, placed on and above ground was higher in the remnant fragments of central Chile due to an increase in predator abundance. The rate of nest predation in forest remnants was larger than in native continuous forest. Small mammals were the main nest predators. Despite high predation rates, the abundance of rhinocryptids is higher in forest remnants, suggesting that fragments might constitute ecological traps.  相似文献   
5.
6.
Cells respond to double-strand breaks (DSBs) by activating DNA damage response pathways, including cell cycle arrest. We have previously shown that a single double-strand break generated via CRISPR/Cas9 is sufficient to delay cell cycle progression and compromise cell viability. However, we also found that the cellular response to DSBs can vary, independent of the number of lesions. This implies that not all DSBs are equally toxic, and raises the question if the location of a single double-strand break could influence its toxicity. To systematically investigate if DSB-location is a determinant of toxicity we performed a CRISPR/Cas9 screen targeting 6237 single sites in the human genome. Next, we developed a data-driven framework to design CRISPR/Cas9 sgRNA (crRNA) pools targeting specific chromatin features. The chromatin context was defined using ChromHMM states, Lamin-B1 DAM-iD, DNAseI hypersensitivity, and RNA-sequencing data. We computationally designed 6 distinct crRNA pools, each containing 10 crRNAs targeting the same chromatin state. We show that the toxicity of a DSB is highly similar across the different ChromHMM states. Rather, we find that the major determinants of toxicity of a sgRNA are cutting efficiency and off-target effects. Thus, chromatin features have little to no effect on the toxicity of a single CRISPR/Cas9-induced DSB.  相似文献   
7.
The production of mammalian proteins in sufficient quantity and quality for structural and functional studies is a major challenge in biology. Intrinsic limitations of yeast and bacterial expression systems preclude their use for the synthesis of a significant number of mammalian proteins. This creates the necessity of well-identified expression systems based on mammalian cells. In this paper, we demonstrate that adult mammalian skeletal muscle, transfected in vivo by electroporation with DNA plasmids, is an excellent heterologous mammalian protein expression system. By using the fluorescent protein EGFP as a model, it is shown that muscle fibers express, during the course of a few days, large amounts of authentic replicas of transgenic proteins. Yields of approximately 1mg/g of tissue were obtained, comparable to those of other expression systems. The involvement of adult mammalian cells assures an optimal environment for proper protein folding and processing. All these advantages complement a methodology that is universally accessible to biomedical investigators and simple to implement.  相似文献   
8.
Among the gynaecological malignancies, ovarian cancer is one of the neoplastic forms with the poorest prognosis and with the bad overall and disease-free survival rates than other gynaecological cancers. Ovarian tumors can be classified on the basis of the cells of origin in epithelial, stromal and germ cell tumors. Epithelial ovarian tumors display great histological heterogeneity and can be further subdivided into benign, intermediate or borderline, and invasive tumors. Several studies on ovarian tumors, have focused on the identification of both diagnostic and prognostic markers for applications in clinical practice. High-throughput technologies have accelerated the process of biomolecular study and genomic discovery; unfortunately, validity of these should be still demonstrated by extensive researches on sensibility and sensitivity of ovarian cancer novel biomarkers, determining whether gene profiling and proteomics could help differentiate between patients with metastatic ovarian cancer and primary ovarian carcinomas, and their potential impact on management. Therefore, considerable interest lies in identifying molecular and protein biomarkers and indicators to guide treatment decisions and clinical follow up. In this review, the current state of knowledge about the genoproteomic and potential clinical value of gene expression profiling in ovarian cancer and ovarian borderline tumors is discussed, focusing on three main areas: distinguishing normal ovarian tissue from ovarian cancers and borderline tumors, identifying different genotypes of ovarian tissue and identifying proteins linked to cancer or tumor development. By these targets, authors focus on the use of novel molecules, developed on the proteomics and genomics researches, as potential protein biomarkers in the management of ovarian cancer or borderline tumor, overlooking on current state of the art and on future perspectives of researches.Key Words: Ovarian cancer, borderline ovarian tumors, markers, genomics, proteomics, oncogenes.  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号