首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   45篇
  免费   3篇
  48篇
  2021年   2篇
  2018年   1篇
  2017年   4篇
  2016年   6篇
  2015年   2篇
  2014年   3篇
  2013年   4篇
  2012年   2篇
  2011年   1篇
  2008年   1篇
  2007年   2篇
  2006年   2篇
  2005年   1篇
  2004年   1篇
  2003年   7篇
  2002年   1篇
  2000年   3篇
  1999年   2篇
  1998年   1篇
  1996年   1篇
  1992年   1篇
排序方式: 共有48条查询结果,搜索用时 15 毫秒
1.
Purified GPI-linked molecules incorporate spontaneously in vitro into mammalian cell plasma membranes. Recent evidence suggests that the transferred molecules insert stably into the external leaflet of the acceptor cell plasma membrane through their acyl chains and behave subsequently in a way similar to endogenous GPI-linked molecules. Transfer of GPI-linked proteins between cells has also been documented in vivo and may explain the uptake by host cells o f pathogen-derived virulence factors carrying a GPI anchor. In this comment article, Subburaj Ilangumaran, Peter Robinson and Daniel Hoessli review what is known about GPI transfer and discuss the use of GPI transfer for transient cell-surface expression of foreign proteins.  相似文献   
2.
Recent reports have shown that IL-21, in synergy with IL-15, stimulates proliferation of CD8(+) T lymphocytes in the absence of signaling via the TCR. In this study, we show that IL-6, which induces phosphorylation of STAT3 similarly to IL-21, also can stimulate proliferation of CD8(+) T cells in synergy with IL-7 or IL-15. IL-6 displays a stronger synergy with IL-7 than with IL-15 to stimulate naive CD8(+) T cells. Concomitant stimulation by IL-6 or IL-21 augments phosphorylation and DNA-binding activity of STAT5 induced by IL-7 or IL-15. Like IL-21, IL-6 reduces the TCR signaling threshold required to stimulate CD8(+) T cells. Prior culture of P14 TCR transgenic CD8 T cells with IL-6 or IL-21 in the presence of IL-7 or IL-15 augments their proliferation and cytolytic activity upon subsequent stimulation by Ag. Furthermore, cytokine stimulation induces quantitatively and qualitatively distinct phenotypic changes on CD8(+) T cells compared with those induced by TCR signaling. We propose that the ability of IL-6 to induce TCR-independent activation of CD8(+) T cells in synergy with IL-7 or IL-15 may play an important role in the transition from innate to adaptive immunity.  相似文献   
3.
4.
5.
6.
7.
8.
Regulatory role of E-NTPase/NTPDase in fat/CD36-mediated fatty acid uptake   总被引:1,自引:0,他引:1  
Fatty acid translocase (FAT)/CD36-mediated long-chain fatty acid uptake in human umbilical vessel endothelial cells is associated with as yet uncharacterized translocase activity. The molecular mechanism of its function is not yet understood. Numerous attempts to purify rat cardiac sarcolemmal E-NTPase (an integral membrane protein also referred to as ecto-Ca(2+)/Mg(2+)ATPase) have revealed a complete amino acid sequence identity for FAT/CD36 protein. The most striking observation is that purified CD36 from human platelets shows significant E-NTPase activity. In view of recent progress in understanding CD36 functional properties, an attempt is made in this article to illustrate the point that association of E-NTPase (possibly extracellular Ca(2+)/Mg(2+)nucleotide triphosphate diphosphohydrolase) activity with CD36 may be of potential functional significance.  相似文献   
9.
Transmembrane signaling requires modular interactions between signaling proteins, phosphorylation or dephosphorylation of the interacting protein partners [1] and temporary elaboration of supramolecular structures [2], to convey the molecular information from the cell surface to the nucleus. Such signaling complexes at the plasma membrane are instrumental in translating the extracellular cues into intracellular signals for gene activation. In the most straightforward case, ligand binding promotes homodimerization of the transmembrane receptor which facilitates modular interactions between the receptor's cytoplasmic domains and intracellular signaling and adaptor proteins [3]. For example, most growth factor receptors contain a cytoplasmic protein tyrosine kinase (PTK) domain and ligand-mediated receptor dimerization leads to cross phosphorylation of tyrosines in the receptor's cytoplasmic domains, an event that initiates the signaling cascade [4]. In other signaling pathways where the receptors have no intrinsic kinase activity, intracellular non-receptor PTKs (i.e. Src family PTKs, JAKs) are recruited to the cytoplasmic domain of the engaged receptor. Execution of these initial phosphorylations and their translation into efficient cellular stimulation requires concomitant activation of diverse signaling pathways. Availability of stable, preassembled matrices at the plasma membrane would facilitate scaffolding of a large array of receptors, coreceptors, tyrosine kinases and other signaling and adapter proteins, as it is the case in signaling via the T cell antigen receptor [5]. The concept of the signaling platform [6] has gained usage to characterize the membrane structure where many different membrane-bound components need to be assembled in a coordinated manner to carry out signaling.The structural basis of the signaling platform lies in preferential assembly of certain classes of lipids into distinct physical and functional compartments within the plasma membrane [7,8]. These membrane microdomains or rafts (Figure 1) serve as privileged sites where receptors and proximal signaling molecules optimally interact [9]. In this review, we shall discuss first how signaling platforms are assembled and how receptors and their signaling machinery could be functionally linked in such structures. The second part of our review will deal with selected examples of raft-based signaling pathways in T lymphocytes and NK cells to illustrate the ways in which rafts may facilitate signaling.  相似文献   
10.
As an abundant ROS, hydrogen peroxide (H2O2) plays pivotal roles in plant growth and development. In this work, we conducted for the first time an iTRAQ‐based quantitative proteomic analysis of wheat seedling growth under different exogenous H2O2 treatments. The growth of seedlings and roots was significantly restrained by increased H2O2 concentration stress. Malondialdehyde, soluble sugar, and proline contents as well as peroxidase activity increased with increasing H2O2 levels. A total of 3 425 proteins were identified by iTRAQ, of which 157 showed differential expression and 44 were newly identified H2O2‐responsive proteins. H2O2‐responsive proteins were mainly involved in stress/defense/detoxification, signal transduction, and carbohydrate metabolism. It is clear that up‐regulated expression of signal transduction and stress/defence/detoxification‐related proteins under H2O2 stress, such as plasma membrane intrinsic protein 1, fasciclin‐like arabinogalactan protein, and superoxide dismutase, could contribute to H2O2 tolerance of wheat seedlings. Increased gluconeogenesis (phosphoenol‐pyruvate carboxykinase) and decreased pyruvate kinase proteins are potentially related to the higher H2O2 tolerance of wheat seedlings. A metabolic pathway of wheat seedling growth under H2O2 stress is presented.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号