首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2077篇
  免费   97篇
  国内免费   1篇
  2175篇
  2023年   6篇
  2022年   17篇
  2021年   28篇
  2020年   16篇
  2019年   28篇
  2018年   31篇
  2017年   22篇
  2016年   47篇
  2015年   56篇
  2014年   76篇
  2013年   145篇
  2012年   142篇
  2011年   133篇
  2010年   90篇
  2009年   72篇
  2008年   149篇
  2007年   124篇
  2006年   125篇
  2005年   145篇
  2004年   131篇
  2003年   134篇
  2002年   129篇
  2001年   23篇
  2000年   29篇
  1999年   21篇
  1998年   30篇
  1997年   28篇
  1996年   21篇
  1995年   14篇
  1994年   16篇
  1993年   9篇
  1992年   14篇
  1991年   15篇
  1990年   14篇
  1989年   11篇
  1988年   6篇
  1987年   9篇
  1986年   5篇
  1985年   10篇
  1984年   7篇
  1983年   7篇
  1982年   6篇
  1981年   5篇
  1979年   4篇
  1978年   6篇
  1977年   2篇
  1975年   2篇
  1973年   3篇
  1970年   5篇
  1968年   3篇
排序方式: 共有2175条查询结果,搜索用时 0 毫秒
1.
2.
Growth and death rates of aboveground plant parts were measured in a mature forest and four different-aged deciduous broadleaf forests regeneratede after clear-cutting, with special reference to rates for woody parts (stems and branches) of different diameters (ø) in rerms of the pipe model theory (Shinozaki et al., 1964). The total biomass increment of woody parts of trees higher than 1.3 m varied within a range of 2.1-4.6 ton ha?1 yr?1, the increase beingdue largely to the growth of canopy trees exposed to direct sunlight. Biomass increments of small (ø<1 cm) and medium (1≤ø<5 cm) woody parts were negligibly small except in the youngest forest, and changes in aboveground woody biomass with forest age after clear-cutting mainly resulted from accumulation of large (5 cm<ø) woody parts of canopy trees. Biomass loss of trees due to death and grazing increased with forest age from 4.0 to 8.3 ton ha?1 yr?1. Recovery of leaf and small wood falls was observed at the early stage of regeneration, while large wood falls increased during regeneration. Flower and fruit fall was markedly higher in the mature forest than in the other four forest types. Mortality of woody parts became higher with forest age and was 20, 5.0 and 0.46% yr?1 for small, medium and large parts, respectively, at the mature stage. Aboveground net production of the forest was in therange 7.6-13.3 ton ha?1 yr?1 with the undergrowth vegetation lower than 1.3 m being 0.4-1.4 ton ha?1 yr?1. Production recovered rapidly at an early stage of regeneration and was highest in mature forest.  相似文献   
3.
Concentrations of cadaverine, monoacetylcadaverine and monopropionylcadaverine in the blood of schizophrenic and nonschizophrenic subjects were measured. Two groups, one from the U.S.A. the other from Japan, were tested. Monoacetylcadaverine and monopropionylcadaverine were found elevated in the blood of some schizophrenic patients in comparison with those in controls in each group. Their increase could be caused by a reduced monoamine oxidase activity or by an increased acylation in schizophrenic patients.  相似文献   
4.
Ferredoxin-dependent sulfite reductase (Fd-SiR) (EC 1.8.7.1) was purified about 1136-fold, with a yield of 11%, from fresh thalli of Porphyra yezoensis by a procedure involving ammonium sulfate precipitation, DEAE-cellulose chromatography, Buty 1-Toyopearl chromatography, Sephadex G-100 gel filtration and ferredoxin-Sepharose affinity chromatography. The purified enzyme was apparently homogeneous, as judged on polyacrylamide disc gel electrophoresis, with a specific activity of 100 units/mg of protein. The molecular weight of the enzyme was estimated to be 70 kilodaltons by gel filtration. On subunit analysis by SDS-PAGE, a single band corresponding to molecular weight of 65 kilodaltons appeared. The purified enzyme (Fd-SiR) showed 5-times higher ferredoxin-dependent activity than methyl viologen-linked activity. In the oxidized form, the enzyme exhibited absorption maxima at 278, 390 (Soret band), 586 (a band) and 714 (CT band) nm, indicating that siroheme is involved in the catalysis of sulfite reduction. The absorbance ratios, A390: A218 and A586 :A390, were 0.32 and 0.31, respectively. A plot of the substrate (sulfite) and electron donor (ferredoxin) concentrations versus enzymatic (Fd-SiR) activity yielded sigmoidal curves, giving Hill coefficients («) of 2.3 (for sulfite) and 2.7 (for ferredoxin), respectively. Antibody against the isolated enzyme was raised in rabbits. Analysis of the antiserum by immunodiffusion suggested that it was specific against isolated Fd-SiR. Using the antiserum, dot immunoblotting was performed to determine the immunological similarity of Fd-SiRs from Porphyra yezoensis, Spirulina platensis, Brassica chinensis and Spinacia oleracea. The tests revealed that the four forms of assimilatory Fd-SiR have antigenic determinants in common.  相似文献   
5.
The structure and function of a cadaverine-lysine antiporter CadB and a putrescine-ornithine antiporter PotE in Escherichia coli were evaluated using model structures based on the crystal structure of AdiC, an agmatine-arginine antiporter, and the activities of various CadB and PotE mutants. The central cavity of CadB, containing the substrate binding site, was wider than that of PotE, mirroring the different sizes of cadaverine and putrescine. The size of the central cavity of CadB and PotE was dependent on the angle of transmembrane helix 6 (TM6) against the periplasm. Tyr(73), Tyr(89), Tyr(90), Glu(204), Tyr(235), Asp(303), and Tyr(423) of CadB, and Cys(62), Trp(201), Glu(207), Trp(292), and Tyr(425) of PotE were strongly involved in the antiport activities. In addition, Trp(43), Tyr(57), Tyr(107), Tyr(366), and Tyr(368) of CadB were involved preferentially in cadaverine uptake at neutral pH, while only Tyr(90) of PotE was involved preferentially in putrescine uptake. The results indicate that the central cavity of CadB consists of TMs 2, 3, 6, 7, 8, and 10, and that of PotE consists of TMs 2, 3, 6, and 8. These results also suggest that several amino acid residues are necessary for recognition of cadaverine in the periplasm because the level of cadaverine is much lower than that of putrescine in the periplasm at neutral pH. All the amino acid residues identified as being strongly involved in both the antiport and uptake activities were located on the surface of the transport path consisting of the central cavity and TM12.  相似文献   
6.
7.
We have studied hydrotropism and its interaction with gravitropism in agravitropic roots of a pea mutant and normal roots of peas (Pisum sativum L.) and maize (Zea mays L.). The interaction between hydrotropism and gravitropism in normal roots of peas or maize were also examined by nullifying the gravitropic response on a clinostat and by changing the stimulus-angle for gravistimulation. Depending on the intensity of both hydrostimulation and gravistimulation, hydrotropism and gravitropism of seedling roots strongly interact with one another. When the gravitropic response was reduced, either genetically or physiologically, the hydrotropic response of roots became more unequivocal. Also, roots more sensitive to gravity appear to require a greater moisture gradient for the induction of hydrotropism. Positive hydrotropism of roots occurred due to a differential growth in the elongation zone; the elongation was much more inhibited on the moistened side than on the dry side of the roots. It was suggested that the site of sensory perception for hydrotropism resides in the root cap, as does the sensory site for gravitropism. Furthermore, an auxin inhibitor, 2,3,5-triiodobenzoic acid (TIBA), and a calcium chelator, ethyleneglycol-bis-(-aminoethylether)-N,N,N,N- tetraacetic acid (EGTA), inhibited both hydrotropism and gravitropism in roots. These results suggest that the two tropisms share a common mechanism in the signal transduction step.  相似文献   
8.
Function of RNA-binding protein Musashi-1 in stem cells   总被引:19,自引:0,他引:19  
Musashi is an evolutionarily conserved family of RNA-binding proteins that is preferentially expressed in the nervous system. The first member of the Musashi family was identified in Drosophila. This protein plays an essential role in regulating the asymmetric cell division of ectodermal precursor cells known as sensory organ precursor cells through the translational regulation of target mRNA. In the CNS of Drosophila larvae, however, Musashi is expressed in proliferating neuroblasts and likely has a different function. Its probable mammalian homologue, Musashi-1, is a neural RNA-binding protein that is strongly expressed in fetal and adult neural stem cells (NSCs). Mammalian Musashi-1 augments Notch signaling through the translational repression of its target mRNA, m-Numb, thereby contributing to the self-renewal of NSCs. In addition to its functions in NSCs, the role of mammalian Musashi-1 protein in epithelial stem cells, including intestinal and mammary gland stem cells, is attracting increasing interest.  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号