首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   206篇
  免费   38篇
  244篇
  2018年   3篇
  2017年   2篇
  2016年   3篇
  2015年   8篇
  2014年   4篇
  2013年   9篇
  2012年   16篇
  2011年   10篇
  2010年   5篇
  2009年   5篇
  2008年   12篇
  2007年   8篇
  2006年   5篇
  2005年   6篇
  2004年   6篇
  2003年   9篇
  2002年   11篇
  2001年   9篇
  2000年   8篇
  1999年   8篇
  1995年   2篇
  1994年   3篇
  1993年   5篇
  1992年   3篇
  1991年   6篇
  1990年   9篇
  1989年   2篇
  1988年   4篇
  1987年   2篇
  1985年   2篇
  1983年   3篇
  1977年   2篇
  1975年   2篇
  1973年   1篇
  1972年   3篇
  1971年   1篇
  1970年   1篇
  1969年   4篇
  1967年   3篇
  1965年   1篇
  1964年   18篇
  1963年   1篇
  1962年   1篇
  1961年   1篇
  1960年   1篇
  1958年   1篇
  1955年   1篇
  1954年   2篇
  1952年   1篇
  1950年   2篇
排序方式: 共有244条查询结果,搜索用时 9 毫秒
1.
Regulation of Fas ligand-induced apoptosis by TNF.   总被引:7,自引:0,他引:7  
Fas ligand (FasL, CD95L) expression helps control inflammatory reactions in immune privileged sites such as the eye. Cellular activation is normally required to render lymphoid cells sensitive to FasL-induced death; however, both activated and freshly isolated Fas(+) lymphoid cells are efficiently killed in the eye. Thus, we examined factors that might regulate cell death in the eye. TNF levels rapidly increased in the eye after the injection of lymphoid cells, and these cells underwent apoptosis within 24 h. Coinjection of anti-TNF Ab with the lymphoid cells blocked this cell death. Furthermore, TNFR2(-/-) T cells did not undergo apoptosis in the eyes of normal mice, while normal and TNFR1(-/-) T cells were killed by apoptosis. In vitro, TNF enhanced the Fas-mediated apoptosis of unactivated T cells through decreased intracellular levels of FLIP and increased production of the pro-apoptotic molecule Bax. This effect was mediated through the TNFR2 receptor. In vivo, intracameral injection of normal or TNFR1(-/-) 2,4,6-trinitrophenyl-coupled T cells into normal mice induced immune deviation, but TNFR2(-/-) 2,4,6-trinitrophenyl-coupled T cells were ineffective. Collectively, our results provide evidence of a role for the p75 TNFR in cell death in that TNF signaling through TNFR2 sensitizes lymphoid cells for Fas-mediated apoptosis. We conclude that there is complicity between apoptosis and elements of the inflammatory response in controlling lymphocyte function in immune privileged sites.  相似文献   
2.
The long-term results of full-thickness (N = 11) and split-thickness (N = 14) skin grafts for reconstitution of the palmar surface following release of palmar burn scar contractures in pediatric patients are compared. Patients treated with full-thickness skin grafts required 1.2 +/- 0.4 operations (mean +/- SD). Patients treated with split-thickness skin grafts required 1.3 +/- 0.6 operations (mean +/- SD). No significant difference in the number of operative procedures was noted. No functional difference existed between the two groups. The use of split-thickness skin grafts provided comparable function without increased operative procedures and was less deforming. Increased use of split-thickness skin grafts following release of palmar burn scar contractures in pediatric patients should be considered.  相似文献   
3.
A new affinity label for ribulose bisphosphate carboxylase/oxygenase from Rhodospirillum rubrum, 2-(4-bromoacetamido)anilino-2-deoxypentitol 1,5-bisphosphate, has been prepared, Reductive amination of ribulose-P2 with p-phenylenediamine in the presence of sodium cyanoborohydride yielded an epimeric mixture which was resolved by chromatography on quaternary aminoethyl-Sephadex. Subsequent bromoacetylation of the isolated amino bisphosphates gave reagents A and B (ribo and arabino epimers of 2-(4-bromoacetamido) anilino-2-deoxypentitol 1,5-bisphosphate) which were competitive inhibitors of the carboxylase with Ki values of 705 and 104 microM, respectively. Reagent A exhibited no time-dependent effects on the carboxylase in either the deactivated or activated state. Incubation of the enzyme with reagent B in the presence of the essential activators CO2 and Mg2+, however, resulted in an irreversible, time-dependent loss of activity, with a Kinact of 125 microM and a minimal half-time of 7.3 min. Covalent incorporation of [14C]reagent B was directly proportional to the loss of activity, with total inactivation correlating with an incorporation of 1.1 mol of reagent/mol of subunit. Inclusion of the competitive inhibitor 2-carboxyribitol 1,5-bisphosphate protected against inactivation with a concomitant reduction in incorporation. Neither reagent affected the activity of spinach carboxylase. Fractionation of [14C]reagent B-modified enzyme on DEAE-cellulose, subsequent to carboxymethylation and tryptic digestion, revealed two major radioactive peaks of approximately equal area. Digestion of each peak with alkaline phosphatase and rechromatography on DEAE-cellulose resulted in pure peptides I and II. The peptides were identical except in the site of labeling: peptide I contained a modified cysteinyl residue while peptide II contained a modified histidyl residue. Automated Edman degradation established the sequence as (sequence in text) which is located near the NH2 terminus of the enzyme. The lack of reactivity with the spinach enzyme is explained by the deletion of the histidyl residue and the replacement of cysteine by tryptophan in the eukaryotic species. Although the nonconservation of the modified residues argues against a functional role other than maintenance of structural integrity, the extensive homology in this region among seven different species of carboxylase is compatible with the region comprising a portion of the active site.  相似文献   
4.
5.
The RNA genome of tobacco etch potyvirus (TEV) was engineered to express bacterial beta-glucuronidase (GUS) fused to the virus helper component proteinase (HC-Pro). It was shown previously that prolonged periods (approximately 1 month) of TEV-GUS propagation in plants resulted in the appearance of spontaneous deletion variants. Nine deletion mutants were identified by nucleotide sequence analysis of 40 cDNA clones obtained after polymerase chain reaction amplification. The mutants were missing between 1,741 and 2,074 nucleotides from TEV-GUS, including the sequences coding for most of GUS and the N-terminal region of HC-Pro. This region of HC-Pro contains determinants involved in helper component activity during aphid transmission, as well as a highly conserved series of cysteine residues. The deletion variants were shown to replicate and move systemically without the aid of a helper virus. Infectious viruses harboring the two largest HC-Pro deletions (termed TEV-2del and TEV-7del) were reconstructed by subcloning the corresponding mutated regions into full-length DNA copies of the TEV genome. Characterization of these and additional variants derived by site-directed mutagenesis demonstrated that deletion of sequences coding for the HC-Pro N-terminal domain had a negative effect on accumulation of viral RNA and coat protein. The TEV-2del variant possessed an aphid-nontransmissible phenotype that could be rescued partially by prefeeding of aphids on active HC-Pro from another potyvirus. These data suggest that the N-terminal domain of HC-Pro or its coding sequence enhances virus replication or genome expression but does not provide an activity essential for these processes. The function of this domain, as well as a proposed deletion mechanism involving nonhomologous recombination, is discussed.  相似文献   
6.
We have previously shown that repeated s.c. implantation of rabbits with pellets containing morphine or certain other narcotics evokes production of a serum morphine-binding component that has the characteristics of an immunoglobulin. We have, in the study reported here, given rabbit anti-morphine pellet serum (anti-MP) to rats i.v. at a dose equal to 20% of their blood volume. Effects on morphine analgesia as measured by the hot plate were studied following a 5 mg/kg dose of morphine. The anti-MP serum and an antiserum to a morphine-protein conjugate both significantly attenuated the analgesic response to morphine on the first day after serum treatment when compared to results in rats given control rabbit serum. Subsequent testing of the same rats (on Days 2, 9, and 48) with no additional serum treatment showed no differences in response.  相似文献   
7.
The classical role of hemoglobin in the erythrocytes is to carry oxygen from the lungs to the tissues via the circulation. However, hemoglobin also acts as a redox regulator and as a scavenger of the gaseous mediators nitric oxide (NO) and hydrogen sulfide (H2S). Here we show that upregulation of hemoglobin (α, β and δ variants of globin proteins) occurs in human peripheral blood mononuclear cells (PBMCs) in critical illness (patients with severe third-degree burn injury and patients with sepsis). The increase in intracellular hemoglobin concentration is a result of a combination of enhanced protein expression and uptake from the extra-cellular space via a CD163-dependent mechanism. Intracellular hemoglobin preferentially localizes to the mitochondria, where it interacts with complex I and, on the one hand, increases mitochondrial respiratory rate and mitochondrial membrane potential, and on the other hand, protects from H2O2-induced cytotoxicity and mitochondrial DNA damage. Both burn injury and sepsis were associated with increased plasma levels of H2S. Incubation of mononuclear cells with H2S induced hemoglobin mRNA upregulation in PBMCs in vitro. Intracellular hemoglobin upregulation conferred a protective effect against cell dysfunction elicited by H2S. Hemoglobin uptake also was associated with a protection from, and induced the upregulation of, HIF-1α and Nrf2 mRNA. In conclusion, PBMCs in critical illness upregulate their intracellular hemoglobin levels by a combination of active synthesis and uptake from the extracellular medium. We propose that this process serves as a defense mechanism protecting the cell against cytotoxic concentrations of H2S and other gaseous transmitters, oxidants and free radicals produced in critically ill patients.  相似文献   
8.

Purpose

Myeloid-derived suppressor cells (MDSC) are a heterogeneous population of immunosuppressive cells that are upregulated in cancer. Little is known about the prevalence and importance of MDSC in pancreas adenocarcinoma (PA).

Experimental design

Peripheral blood, bone marrow, and tumor samples were collected from pancreatic cancer patients, analyzed for MDSC (CD15+CD11b+) by flow cytometry and compared to cancer-free controls. The suppressive capacity of MDSC (CD11b+Gr-1+) and the effectiveness of MDSC depletion were assessed in C57BL/6 mice inoculated with Pan02, a murine PA, and treated with placebo or zoledronic acid, a potent aminobisphosphonate previously shown to target MDSC. The tumor microenvironment was analyzed for MDSC (Gr1+CD11b+), effector T cells, and tumor cytokine levels.

Results

Patients with PA demonstrated increased frequency of MDSC in the bone marrow and peripheral circulation which correlated with disease stage. Normal pancreas tissue showed no MDSC infiltrate, while human tumors avidly recruited MDSC. Murine tumors similarly recruited MDSC that suppressed CD8+ T cells in vitro and accelerated tumor growth in vivo. Treatment with zoledronic acid impaired intratumoral MDSC accumulation resulting in delayed tumor growth rate, prolonged median survival, and increased recruitment of T cells to the tumor. This was associated with a more robust type 1 response with increased levels of IFN-γ and decreased levels of IL-10.

Conclusions

MDSC are important mediators of tumor-induced immunosuppression in pancreatic cancer. Inhibiting MDSC accumulation with zoledronic acid improves the host anti-tumor response in animal studies suggesting that efforts to block MDSC may represent a novel treatment strategy for pancreatic cancer.  相似文献   
9.
Insulin has a well-recognized anabolic effect on muscle protein, yet critically ill, severely injured patients are often considered "resistant" to the action of insulin. The purpose of this study was to assess the in vivo effects of hyperinsulinemia on human skeletal muscle in severely injured patients. To accomplish this goal, 14 patients with burns encompassing >40% of their body surface area underwent metabolic evaluation utilizing isotopic dilution of phenylalanine, femoral artery and vein blood sampling, and sequential muscle biopsies of the leg. After baseline metabolic measurements were taken, insulin was infused into the femoral artery at 0.45 mIU.min(-1).100 ml leg volume(-1) to create a local hyperinsulinemia but with minimal systemic perturbations. Insulin administration increased femoral venous concentration of insulin (P < 0.01) but with only a 4% (insignificant) decrease in the arterial glucose concentration and a 7% (insignificant) decrease in the arterial concentration of phenylalanine. Extremity hyperinsulinemia significantly increased leg blood flow (P < 0.05) and the rate of muscle protein synthesis (P < 0.05). Neither the rate of muscle protein breakdown nor the rate of transmembrane transport of phenylalanine was significantly altered with extremity hyperinsulinemia. In conclusion, this study demonstrates that insulin directly stimulates muscle protein synthesis in severely injured patients.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号