排序方式: 共有90条查询结果,搜索用时 0 毫秒
1.
The anthers of three genotypes ofLycopersicon esculentum, viz. cv. HS-101, cv. HS-102 and an F1 hybrid (Montfavet 63-4xHS-101) in different stages of development were cultured in various defined nutritive media. Only
anthers containing microspores in the early uninucleate stage were found to respond with the culture medium in the formation
of androgenic callus. The DGII medium with 2 mg l−1 NAA and 1 mg 1−1 kinetin was found to be best for callus induction but MS medium supplemented with 2 mg l−1 2,4-D and 0.1 mg 1−1 BAP favoured proliferation and growth of the callus. The androgenic microspores followed the ‘B’ type pathway of androgenesis
in the formation of callus.
Induction of tracheids in the callus could be achieved by supplementing the basal medium with NAA and kinetin or 2,4-D and
BAP. Initiation of vessel elements and cambium were favoured by addition of NAA and kinetin and that of the phloem in the
presence of 2,4-D and BAP in the basal medium, suggesting that the hormonal requirements for production of different elements
of the vascular system in androgenic callus are different. Although roots could be induced from the callus, shoot differentiation
could not be achieved under cultural conditions. 相似文献
2.
Mahmudul Hasan Rifat Jamil Ahmed Milad Ahmed Foeaz Ahmed Airin Gulshan Mahmudul Hasan 《PLoS computational biology》2022,18(6)
Accelerated cell death 11 (ACD11) is an autoimmune gene that suppresses pathogen infection in plants by preventing plant cells from becoming infected by any pathogen. This gene is widely known for growth inhibition, premature leaf chlorosis, and defense-related programmed cell death (PCD) in seedlings before flowering in Arabidopsis plant. Specific amino acid changes in the ACD11 protein’s highly conserved domains are linked to autoimmune symptoms including constitutive defensive responses and necrosis without pathogen awareness. The molecular aspect of the aberrant activity of the ACD11 protein is difficult to ascertain. The purpose of our study was to find the most deleterious mutation position in the ACD11 protein and correlate them with their abnormal expression pattern. Using several computational methods, we discovered PCD vulnerable single nucleotide polymorphisms (SNPs) in ACD11. We analysed the RNA-Seq data, identified the detrimental nonsynonymous SNPs (nsSNP), built genetically mutated protein structures and used molecular docking to assess the impact of mutation. Our results demonstrated that the A15T and A39D mutations in the GLTP domain were likely to be extremely detrimental mutations that inhibit the expression of the ACD11 protein domain by destabilizing its composition, as well as disrupt its catalytic effectiveness. When compared to the A15T mutant, the A39D mutant was more likely to destabilize the protein structure. In conclusion, these mutants can aid in the better understanding of the vast pool of PCD susceptibilities connected to ACD11 gene GLTP domain activation. 相似文献
3.
This article presents an overview of the mechanism of chromium (Cr) stress in plants. Toxic effects of Cr on plant growth and development depend primarily on its valence state. Cr(VI) is highly toxic and mobile whereas Cr(III) is less toxic. Cr-induced oxidative stress involves induction of lipid peroxidation in plants that cause severe damage to cell membranes which includes degradation of photosynthetic pigments causing deterioration in growth. The potential of plants with the adequacy to accumulate or to stabilize Cr compounds for bioremediation of Cr contamination has gained engrossment in recent years. 相似文献
4.
5.
Trichomonas vaginalis causes the trichomoniasis, in women and urethritis and prostate cancer in men. Its genome draft published by TIGR in 2007 presents many unusual genomic and biochemical features like, exceptionally large genome size, the presence of hydrogenosome, gene duplication, lateral gene transfer mechanism and the presence of miRNA. To understand some of genomic features we have performed a comparative analysis of metabolic pathways of the T. vaginalis with other 22 significant common organisms. Enzymes from the biochemical pathways of T. vaginalis and other selected organisms were retrieved from the KEGG metabolic pathway database. The metabolic pathways of T. vaginalis common in other selected organisms were identified. Total 101 enzymes present in different metabolic pathways of T. vaginalis were found to be orthologous by using BLASTP program against the selected organisms. Except two enzymes all identified orthologous enzymes were also identified as paralogous enzymes. Seventy-five of identified enzymes were also identified as essential for the survival of T. vaginalis, while 26 as non-essential. The identified essential enzymes also represent as good candidate for novel drug targets. Interestingly, some of the identified orthologous and paralogous enzymes were found playing significant role in the key metabolic activities while others were found playing active role in the process of pathogenesis. The N-acetylneuraminate lyase was analyzed as the candidate of lateral genes transfer. These findings clearly suggest the active participation of lateral gene transfer and gene duplication during evolution of T. vaginalis from the enteric to the pathogenic urogenital environment. 相似文献
6.
7.
Gautam B Singh G Wadhwa G Farmer R Singh S Singh AK Jain PA Yadav PK 《Bioinformation》2012,8(3):134-141
Toxoplasma gondii is an obligate intracellular apicomplexan parasite that can infect a wide range of warm-blooded animals including humans. In humans and other intermediate hosts, toxoplasma develops into chronic infection that cannot be eliminated by host's immune response or by currently used drugs. In most cases, chronic infections are largely asymptomatic unless the host becomes immune compromised. Thus, toxoplasma is a global health problem and the situation has become more precarious due to the advent of HIV infections and poor toleration of drugs used to treat toxoplasma infection, having severe side effects and also resistance have been developed to the current generation of drugs. The emergence of these drug resistant varieties of T. gondii has led to a search for novel drug targets. We have performed a comparative analysis of metabolic pathways of the host Homo sapiens and the pathogen T. gondii. The enzymes in the unique pathways of T. gondii, which do not show similarity to any protein from the host, represent attractive potential drug targets. We have listed out 11 such potential drug targets which are playing some important work in more than one pathway. Out of these, one important target is Glutamate dehydrogenase enzyme; it plays crucial part in oxidation reduction, metabolic process and amino acid metabolic process. As this is also present in the targets of tropical diseases of TDR (Tropical disease related Drug) target database and no PDB and MODBASE 3D structural model is available, homology models for Glutamate dehydrogenase enzyme were generated using MODELLER9v6. The model was further explored for the molecular dynamics simulation study with GROMACS, virtual screening and docking studies with suitable inhibitors against the NCI diversity subset molecules from ZINC database, by using AutoDock-Vina. The best ten docking solutions were selected (ZINC01690699, ZINC17465979, ZINC17465983, ZINC18141294_03, ZINC05462670, ZINC01572309, ZINC18055497_01, ZINC18141294, ZINC05462674 and ZINC13152284_01). Further the Complexes were analyzed through LIGPLOT. On the basis of Complex scoring and binding ability it is deciphered that these NCI diversity set II compounds, specifically ZINC01690699 (as it has minimum energy score and one of the highest number of interactions with the active site residue), could be promising inhibitors for T. gondii using Glutamate dehydrogenase as Drug target. 相似文献
8.
Present study investigates the cultivable diversity of root-associated bacteria from a medicinal plant Ajuga bracteosa in the Kangra valley, in order to determine their plant growth promoting (PGP) and biotechnological potential. The plant was found to exhibit a positive rhizosphere effect of 1.3-1.5. A total of 123 morphologically different bacteria were isolated from the rhizospheric soil and roots of the plant. Medium composition was found to have significant effect on the composition of isolated bacterial populations. Majority of the rhizospheric soil isolates belonged to α- and γ-Proteobacteria, with Pseudomonas constituting the most dominant species. Endophytic bacterial community, on other hand, consisted almost exclusively of Firmicutes. Majority of the isolates showed PGP activity by producing siderophores and indole acetic acid. Several isolates were found to exhibit very high antioxidant activity in the culture medium. A significant proportion of isolates also demonstrated other ecologically important activities like phosphate solubilization, nitrogen fixation, and production of hydrolytic enzymes including amylase, protease, lipase, chitinase, cellulase, pectinase and phosphatase. Firmicutes were found to be metabolically the most versatile group and performed multiple enzyme activities. This is the first systematic study of culturable bacterial community from the rhizosphere of A. bracteosa, particularly in the Kangra valley region. 相似文献
9.
Gulshan Chhabra Darshna Chaudhary Madan Varma Manish Sainger Pawan K. Jaiwal 《Physiology and Molecular Biology of Plants》2008,14(4):347-353
An efficient and simple procedure for inducing high frequency direct shoot organogenesis and somatic embryogenesis in lentil from cotyledonary node explants (without both the cotyledons) in response to TDZ alone is reported. TDZ at concentration lower than 2.0 μM induced shoot organogenesis whereas at higher concentration (2.5–15 μM) it caused a shift in regeneration from shoot organogenesis to somatic embryogenesis. The cotyledonary node and seedling cultures developed only shoots even at high concentrations of BAP and TDZ, respectively. TDZ at 0.5 and 5.0 μM was found to be optimal for inducing an average of 4–5 shoots per cotyledonary node in 93 % of the cultures and 55 somatic embryos in 68 % of the cultures, respectively. The somatic embryos were germinated when transferred to lower TDZ concentration (0.5–1.0 μM). The shoots were rooted on MS basal medium containing 2.5 μM IBA. The plantlets were obtained within 8 weeks from initiation of culture and were morphologically similar to seed-raised plants. The possible role of stress in thidiazuron induced somatic embryogenesis is discussed.Key words: Thidiazuron, Lens culinaris, Somatic embryogenesis, Organogenesis 相似文献
10.