首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   69篇
  免费   0篇
  69篇
  2016年   1篇
  2013年   4篇
  2012年   6篇
  2011年   6篇
  2010年   2篇
  2009年   1篇
  2008年   7篇
  2007年   4篇
  2006年   8篇
  2005年   5篇
  2004年   1篇
  2003年   1篇
  2001年   1篇
  1999年   1篇
  1998年   1篇
  1997年   4篇
  1996年   4篇
  1995年   2篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1985年   2篇
  1978年   1篇
排序方式: 共有69条查询结果,搜索用时 15 毫秒
1.
Optical replicas of leaf surfaces were made for characterizingthe lens properties of individual epidermal cells. Using a dentallatex, moulds were made of leaf surfaces and subsequently usedto produce agarose replicas. The replicas focused light in amanner similar to intact epidermal cells and it was possibleto measure both focal lengths and intensifications within leafreplicas of Thermopsis montana, Mahonia repens, and Smilacinastellata which had epidermal cells of different diameter. Focallengths ranged from 74—130 µm which indicated thatlight was concentrated within the underlying photosynthetictissues of these leaves. Focal intensifications were measuredsensiometrically and were 1.5 for T. montana and 2-6 for theother species. These values compare favourably with calculatedfocal lengths and measurements taken from isolated epidermallayers. The results indicate that the epidermis can concentratelight within the leaf to amounts well in excess of ambient light.Furthermore, the replicas faithfully reproduced fine anatomicaldetails from a wide variety of leaves and they provide a non-destructiveway to reproduce surface characteristics for anatomical andphysiological studies.  相似文献   
2.
Habitat fragmentation and its genetic consequences are a critically important issue in evaluating the evolutionary penalties of human habitat modification. Here, we examine the genetic structure and diversity in naturally subdivided and artificially fragmented populations of the endangered tidewater goby (Eucyclogobius newberryi), a small fish restricted to discrete coastal lagoons and estuaries in California, USA. We use five naturally fragmented coastal populations from a 300‐ km spatial scale as a standard to assess migration and drift relative to eight artificially fragmented bay populations from a 30‐ km spatial scale. Using nine microsatellite loci in 621 individuals, and a 522‐base fragment of mitochondrial DNA control region from 103 individuals, we found striking differences in the relative influences of migration and drift on genetic variation at these two scales. Overall, the artificially fragmented populations exhibited a consistent pattern of higher genetic differentiation and significantly lower genetic diversity relative to the naturally fragmented populations. Thus, even in a species characterized by habitat isolation and subdivision, further artificial fragmentation appears to result in substantial population genetic consequences and may not be sustainable.  相似文献   
3.
The hypothesis of this study was that colonizers in decaying leaf litter prefer native species (Erythrina verna) to exotic ones (Eucalyptus camaldulensis and Protium heptaphyllum). Therefore, native species are expected to show higher breakdown rates, increased biomass, richness and density of invertebrate species, and increased biomass of decomposer fungi. Breakdown of leaf litter from these three species was assessed in an Atlantic Rain Forest stream. Four samples were collected during a period of 90 days and washed on a sieve to separate the invertebrates. Then, a series of leaf disks were cut to determine ash‐free dry mass and fungal biomass, and the remaining material was oven‐dried to determine the dry weight. Eucalyptus camaldulensis and E. verna showed higher breakdown rates than P. heptaphyllum, due to differences in leaf physical and chemical characteristics. The harder detritus (P. heptaphyllum) broke down more slowly than detritus with high concentrations of labile compounds (E. camaldulensis). The density of the invertebrates associated with detritus increased with time. There were no differences in density, taxonomic richness or biomass of invertebrates among the leaf types, which indicated that the invertebrates did not distinguish between exotic and native detritus. Fungal colonization varied among samples; E. camaldulensis showed the lowest ergosterol concentrations, mainly due to a high concentration of total phenolics. The detritus with the highest hardness value was colonized most slowly by fungi. These results showed that leaf breakdown in Atlantic Rain Forest streams could be affected either by changes in riparian vegetation, or by becoming more savanna‐like process due to climate change.  相似文献   
4.
The mainland portion of the Adelaide Geosyncline (Mount Lofty and Flinders Ranges) has been postulated as an important arid‐zone climate refugium for Australia. To test the sensitivity of this putative Australian arid biome refugium to contemporary climate change, we compared Generalized Additive Modelling and MaxEnt distribution models for 20 vascular plant species. We aimed to identify shared patterns to inform priority areas for management. Models based on current climate were projected onto a hypothetical 2050 climate with a 1.5°C increase in temperature and 8% decrease in rainfall. Individual comparisons and combined outputs of logistic models for all 20 species showed range contraction to shared refugia in the Flinders Ranges and southern Mount Lofty Ranges. Modelling suggests the Flinders Ranges will experience species turnover while suitable climatic habitat will be retained in the Mount Lofty Ranges for the current suite of species. Fragmentation of the southern Mount Lofty Ranges poses management challenges for conserving species diversity with warming and drying. Although projected models must be interpreted carefully, they suggest the region will remain an important but threatened refugium for mesic species at a continental scale.  相似文献   
5.
Previously, we showed that inoculation of tobacco with Pseudomonas syringae incompatible pv. maculicola results in a rapid and persistent burst of superoxide (O2) from mitochondria, no change in amount of mitochondrial alternative oxidase (AOX) and induction of the hypersensitive response (HR). However, inoculation with incompatible pv. phaseolicola resulted in increased AOX, no O2 burst and no HR. Here, we show that in transgenic plants unable to induce AOX in response to pv. phaseolicola, there is now a strong mitochondrial O2 burst, similar to that normally seen only with pv. maculicola. This interaction did not however result in a HR. This indicates that AOX amount is a key determinant of the mitochondrial O2 burst but also that the burst itself is not sufficient to induce the HR. Surprisingly, the O2 burst normally seen towards pv. maculicola is delayed in plants lacking AOX. This delay is associated with a delayed HR, suggesting that the burst does promote the HR. A O2 burst can also be induced by the complex III inhibitor antimycin A (AA), but is again delayed in plants lacking AOX. The similar mitochondrial response induced by pv. maculicola and AA suggests that electron transport is a target during HR‐inducing biotic interactions.  相似文献   
6.
1. Discharge patterns of streams and rivers may be substantially affected by changes in water management, land use, or climate. Such hydrological alterations are likely to influence biotic processes, including overall ecosystem metabolism (photosynthesis and respiration). One regulator of aquatic ecosystem metabolism directly tied to hydrology is movement of bed sediments. 2. We propose that ecosystem metabolism can be reconstructed or predicted for any suite of hydrological conditions through the use of quantitative relationships between discharge, bed movement and metabolism. We tested this concept on a plains reach of the South Platte River in Colorado. 3. Movement of bed sediments was predicted from river discharge and the Shields stress, a ratio of velocity‐induced stress to sediment grain size. Quantitative relationships were established empirically between metabolic response to bed movement and recovery from bed movement, thus linking metabolism to hydrology. 4. The linkage of metabolism to hydrology allowed us to reconstruct daily photosynthesis and respiration over the 70‐year period for which discharge is known at our study site on the South Platte River. The reconstruction shows major ecological change caused by hydrological manipulation: the river has lost two‐thirds of its photosynthetic potential, and the ratio of photosynthesis to respiration is now much lower than it was prior to 1960. 5. The same approach could be used to anticipate ecological responses to proposed hydrological manipulations, to quantify benefits of hydrological restoration, or to illustrate potential effects of change in climate or land use on flowing‐water ecosystems.  相似文献   
7.
The Dartford Warbler Sylvia undata has recently expanded its range northwards and upwards in the UK, consistent with the hypothesis that this cold‐sensitive species has responded to a warming climate. We interrogated distribution data, collected during four national surveys of this species between 1974 and 2006, to assess whether this large‐scale range expansion has been accompanied by finer‐scale changes in topographic characteristics of breeding locations. Within sites occupied in successive surveys, there was some evidence of limited altitudinal expansion between surveys. Within wider landscapes occupied in successive surveys, the preceding winter climate tended to be harsher at newly colonized sites than at sites that had already been occupied in the previous survey, while territories in newly colonized sites also tended to be on steeper slopes, especially if at higher altitude, and (in 1994 only) to be more south‐facing. Territories in sites that had already been occupied in the previous survey tended to be lower altitude, less steep and more north‐facing than territories in newly colonized landscapes. In 2006 only, the winter climate was significantly milder in newly colonized landscapes than in already occupied sites. The combined effects of a changing climate and topography may have influenced the pattern of in‐filling in the existing range, while colonization of distant areas, especially more latterly, may have been facilitated by a combination of increased dispersal pressure from the existing range and warming of climate which made higher altitude habitat in the new areas more suitable for occupancy. Careful consideration needs to be given to the importance of fine‐scale topographical variation in determining species’ responses to climate change in order to underpin robust adaptation strategies.  相似文献   
8.
1. Inputs of terrestrial arthropods (number and mass m–2 d–1) from riparian corridors to three streams representing different orders were highly variable among seasons and sites, with significantly greater ( P < 0.05) inputs at the headwater stream during summer months, compared with other sites and seasons.
2. No significant differences in estimates of stream retention of terrestrial arthropods (number and mass m–2 d–1) were observed among sites; however, retention of terrestrial arthropods at all sites was significantly greater during summer months, compared with other periods.
3. The gravimetric proportion of terrestrial arthropods present in the stomachs of redbreast sunfish ( Lepomis auritus ) and bluegill ( L. macrochirus ) was equivalent among sites. However, estimates of the dietary importance of terrestrial arthropods at all study sites were significantly greater in the summer, compared with other seasons.
4. Estimates of the potential annual energetic contribution (kJ m–2 d–1) of terrestrial arthropod inputs to the stream system were comparable with published rates of total annual production of aquatic macroinvertebrates in other Virginia headwater streams.
5. Results of this study supported the hypothesis that terrestrial arthropods represented an important energetic subsidy to stream fish during periods of low aquatic macroinvertebrate availability, and suggest that this component of allochthonous input is a potentially significant, but poorly understood energetic linkage between riparian landscapes and stream ecosystems.  相似文献   
9.
Abstract The Capricorn Group of islands in Australia's Great Barrier Reef Marine Park sustains one of the world's largest breeding populations of the Wedge-tailed Shearwater Puffinus pacificus. Heron Island, a 13.5 ha coral cay which supports tourist and research station leases as well as a national park, is the third largest nesting island in the group. Sample censuses of breeding burrows were conducted each year between 1985 and 1990 and a further survey was completed in 1993. These returned estimates of between 13 264±1387 and 16 337±1545 active burrows (Y±SE). Burrow densities within each of the habitats monitored showed no significant trends between years, although there were large differences in burrow density between habitats. There were roughly the same number of burrows in the developed (west) and national park (east) halves of the cay. A miniature video camera system (burrowscope), which allowed nesting chambers at the ends of burrows to be inspected, was used in 1989, 1990 and 1993. This demonstrated that around half the burrows were occupied by incubating birds. Variations were found in the distribution of incubating birds between habitats, although this did not remain constant between the years. In the 1993 season, breeding activity was traced from the burrow establishment to fledging stage. Fifty-one per cent of burrows were used for breeding (eggs laid), 77% of eggs hatched and 80% of chicks produced a fledgling. Overall breeding success for the island was estimated at 61%. In 1993 the area designated as Buildings was found to have significantly lower hatching success compared with natural habitats. Most mortality occurred at the egg stage; however, in the Fringe habitat, mortality was highest at the chick stage. Previous surveys have estimated the breeding population from burrow counts. It now appears that only about 30% of such burrows produce fledglings.  相似文献   
10.
Predicting the probability of successful establishment of plant species by matching climatic variables has considerable potential for incorporation in early warning systems for the management of biological invasions. We select South Africa as a model source area of invasions worldwide because it is an important exporter of plant species to other parts of the world because of the huge international demand for indigenous flora from this biodiversity hotspot. We first mapped the five ecoregions that occur both in South Africa and other parts of the world, but the very coarse definition of the ecoregions led to unreliable results in terms of predicting invasible areas. We then determined the bioclimatic features of South Africa's major terrestrial biomes and projected the potential distribution of analogous areas throughout the world. This approach is much more powerful, but depends strongly on how particular biomes are defined in donor countries. Finally, we developed bioclimatic niche models for 96 plant taxa (species and subspecies) endemic to South Africa and invasive elsewhere, and projected these globally after successfully evaluating model projections specifically for three well‐known invasive species (Carpobrotus edulis, Senecio glastifolius, Vellereophyton dealbatum) in different target areas. Cumulative probabilities of climatic suitability show that high‐risk regions are spatially limited globally but that these closely match hotspots of plant biodiversity. These probabilities are significantly correlated with the number of recorded invasive species from South Africa in natural areas, emphasizing the pivotal role of climate in defining invasion potential. Accounting for potential transfer vectors (trade and tourism) significantly adds to the explanatory power of climate suitability as an index of invasibility. The close match that we found between the climatic component of the ecological habitat suitability and the current pattern of occurrence of South Africa alien species in other parts of the world is encouraging. If species' distribution data in the donor country are available, climatic niche modelling offers a powerful tool for efficient and unbiased first‐step screening. Given that eradication of an established invasive species is extremely difficult and expensive, areas identified as potential new sites should be monitored and quarantine measures should be adopted.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号