排序方式: 共有116条查询结果,搜索用时 12 毫秒
1.
Tryptophan uptake appears to be the limiting factor in growth of tryptophan auxotrophic Saccharomyces cerevisiae strains under the conditions of high hydrostatic pressure and low temperature. When the cells are subjected to a pressure of 25 MPa, tryptophan permease Tat2 is degraded in a manner dependent on ubiquitination by Rsp5. One of the high-pressure growth-conferring genes, HPG2, was shown to be allelic to TAT2. The HPG2-1 (Tat2E27F) mutation site is located within the ExKS motif in the N-terminus, and the HPG2-2 (Tat2D563N) and HPG2-3 (Tat2E570K) mutation sites are located at the KQEIAE sequence in the C-terminus. The HPG2 mutations enhance the stability of Tat2 during high-pressure or low-temperature incubation, leading to cell growth under these stressful conditions. These results suggest that the cytoplasmic tails are involved in Rsp5-mediated ubiquitination of Tat2 under high-pressure or low-temperature conditions.Communicated by K. Horikoshi 相似文献
2.
Fumiyoshi Abe Takeshi Miura Takahiko Nagahama Akira Inoue Ron Usami Koki Horikoshi 《Biotechnology letters》2001,23(24):2027-2034
Thirteen yeast strains were isolated from deep-sea sediment samples collected at a depth of 4500 m to 6500 m in the Japan Trench. Amongst them, strain N6 possessed high tolerance against Cu2+ and could grow on yeast extract/peptone/dextrose/agar containing 50 mM CuSO4. Analysis of the 18S rDNA sequence indicates strain N6 belongs to the genus Cryptococcus. In contrast, the type strain of C. albidus, a typical marine yeast Rhodotorula ingeniosa and Saccharomyces cerevisiae did not grow at high concentrations of CuSO4. Superoxide dismutase (SOD) catalyzes the scavenging of superoxide radicals. The activity of SOD in cell extract of strain N6 was very weak (<1 mU g–1 total protein) when the strain was grown in the absence of CuSO4. However, the activity was stimulated (25.8 mU g–1 total protein) when cells were grown with 1 mM CuSO4 and further enhanced to 110 mU g–1 total protein with 10 mM CuSO4. Catalase activity was increased only 1.4 or 1.1-fold with 1 mM or 10 mM CuSO4 in the growth medium, respectively. These results suggest that SOD may have a role in the defensive mechanisms against high concentrations of CuSO4 in strain N6. 相似文献
3.
Kazutaka Sawada Tomoya Sato Hiroshi Hamajima Lahiru Niroshan Jayakody Miyo Hirata Mikako Yamashiro Marie Tajima Susumu Mitsutake Koji Nagao Keisuke Tsuge Fumiyoshi Abe Kentaro Hanada Hiroshi Kitagaki 《Applied and environmental microbiology》2015,81(11):3688-3698
In nature, different microorganisms create communities through their physiochemical and metabolic interactions. Many fermenting microbes, such as yeasts, lactic acid bacteria, and acetic acid bacteria, secrete acidic substances and grow faster at acidic pH values. However, on the surface of cereals, the pH is neutral to alkaline. Therefore, in order to grow on cereals, microbes must adapt to the alkaline environment at the initial stage of colonization; such adaptations are also crucial for industrial fermentation. Here, we show that the yeast Saccharomyces cerevisiae, which is incapable of synthesizing glucosylceramide (GlcCer), adapted to alkaline conditions after exposure to GlcCer from koji cereal cultured with Aspergillus kawachii. We also show that various species of GlcCer derived from different plants and fungi similarly conferred alkali tolerance to yeast. Although exogenous ceramide also enhanced the alkali tolerance of yeast, no discernible degradation of GlcCer to ceramide was observed in the yeast culture, suggesting that exogenous GlcCer itself exerted the activity. Exogenous GlcCer also increased ethanol tolerance and modified the flavor profile of the yeast cells by altering the membrane properties. These results indicate that GlcCer from A. kawachii modifies the physiology of the yeast S. cerevisiae and demonstrate a new mechanism for cooperation between microbes in food fermentation. 相似文献
4.
5.
Asaha Suzuki Takahiro Mochizuki Satoshi Uemura Toshiki Hiraki Fumiyoshi Abe 《Eukaryotic cell》2013,12(7):990-997
Cells of Saccharomyces cerevisiae express two tryptophan permeases, Tat1 and Tat2, which have different characteristics in terms of their affinity for tryptophan and intracellular localization. Although the high-affinity permease Tat2 has been well documented in terms of its ubiquitin-dependent degradation, the low-affinity permease Tat1 has not yet been characterized fully. Here we show that a high hydrostatic pressure of 25 MPa triggers a degradation of Tat1 which depends on Rsp5 ubiquitin ligase and the EH domain-containing protein End3. Tat1 was resistant to a 3-h cycloheximide treatment, suggesting that it is highly stable under normal growth conditions. The ubiquitination of Tat1 most likely occurs at N-terminal lysines 29 and 31. Simultaneous substitution of arginine for the two lysines prevented Tat1 degradation, but substitution of either of them alone did not, indicating that the roles of lysines 29 and 31 are redundant. When cells were exposed to high pressure, Tat1-GFP was completely lost from the plasma membrane, while substantial amounts of Tat1K29R-K31R-GFP remained. The HPG1-1 (Rsp5P514T) and rsp5-ww3 mutations stabilized Tat1 under high pressure, but any one of the rsp5-ww1, rsp5-ww2, and bul1Δ bul2Δ mutations or single deletions of genes encoding arrestin-related trafficking adaptors did not. However, simultaneous loss of 9-arrestins and Bul1/Bul2 prevented Tat1 degradation at 25 MPa. The results suggest that multiple PPxY motif proteins share some essential roles in regulating Tat1 ubiquitination in response to high hydrostatic pressure. 相似文献
6.
7.
Tatsukawa Y Nakashima E Yamada M Funamoto S Hida A Akahoshi M Sakata R Ross NP Kasagi F Fujiwara S Shore RE 《Radiation research》2008,170(3):269-274
Tatsukawa, Y., Nakashima, E., Yamada, M., Funamoto, S., Hida, A., Akahoshi, M., Sakata, R., Ross, N. P., Kasagi, F., Fujiwara, S. and Shore, R. E. Cardiovascular Disease Risk among Atomic Bomb Survivors Exposed In Utero, 1978-2003. Radiat. Res. 170, 269-274 (2008).Given the well-documented association of in utero radiation exposure with childhood cancer and developmental impairments, the possibility of effects on adult onset diseases is an important issue. The objectives of the present study were to examine the effects of atomic bomb radiation dose on the incidence of hypertension, hypercholesterolemia and cardiovascular disease (myocardial infarction and stroke) among survivors exposed in utero and to compare their risk estimates with those of survivors exposed in childhood (<10 years old) at the time of the bombing. A total of 506 participants exposed in utero and 1,053 participants exposed in childhood were followed during 1978-2003 with biennial clinical examinations. There were no significant radiation dose effects for any diseases in the entire in utero-exposed cohort or in trimester-of-exposure subgroups, though there was a suggestion of an increased risk when fatal and nonfatal cardiovascular disease cases were combined. Positive radiation dose effects were found for hypertension and cardiovascular disease in the childhood-exposure cohort, but there were no statistically significant differences in the relative risks when we compared the two cohorts. Since the in utero cohort was under age 60 at the latest examination, continued follow-up is needed to document cardiovascular disease risk more fully. 相似文献
8.
Exploration of the effects of high hydrostatic pressure on microbial growth, physiology and survival: perspectives from piezophysiology 总被引:1,自引:0,他引:1
Abe F 《Bioscience, biotechnology, and biochemistry》2007,71(10):2347-2357
The discovery of piezophiles (previously referred to as barophiles) prompted researchers to investigate the survival strategies they employ in high-pressure environments. There have been innovative high-pressure studies on biological processes applying modern techniques of genetics and molecular biology in bacteria and yeasts as model organisms. Recent advanced studies in this field have shown unexpected outcomes in microbial growth, physiology and survival when living cells are subjected to high hydrostatic pressure. The effects are conceptually dependent on the sign and magnitude of volume changes associated with any chemical reaction in the cells. Nevertheless, it is difficult to explain the pressure effects on complex metabolic networks based on a simple volume law. The challenges in piezophysiology are to discover whether the physiological responses of living cells to high pressure are relevant to their growth and to identify the critical factors in cell viability and lethality under high pressure from the general and organism-specific viewpoints. 相似文献
9.
Soichiro Tabuchi Junji Ito Takashi Adachi Hiroki Ishida Yoji Hata Fumiyoshi Okazaki Tsutomu Tanaka Chiaki Ogino Akihiko Kondo 《Applied microbiology and biotechnology》2010,87(5):1783-1789
A novel cell surface display system in Aspergillus oryzae was established by using a chitin-binding module (CBM) from Saccharomyces cerevisiae as an anchor protein. CBM was fused to the N or C terminus of green fluorescent protein (GFP) and the fusion proteins (GFP-CBM and CBM-GFP) were expressed using A. oryzae as a host. Western blotting and fluorescence microscopy analysis showed that both GFP-CBM and CBM-GFP were successfully expressed on the cell surface. In addition, cell surface display of triacylglycerol lipase from A. oryzae (tglA), while retaining its activity, was also successfully demonstrated using CBM as an anchor protein. The activity of tglA was significantly higher when tglA was fused to the C terminus than N terminus of CBM. Together, these results show that CBM used as a first anchor protein enables the fusion of both the N and/or C terminus of a target protein. 相似文献
10.
Shimizu H Peng L Myouga F Motohashi R Shinozaki K Shikanai T 《Plant & cell physiology》2008,49(5):835-842
The chloroplast NAD(P)H dehydrogenase (NDH) complex functions in PSI cyclic and chlororespiratory electron transport in higher plants. Eleven plastid-encoded and three nuclear-encoded subunits have been identified so far, but the entire subunit composition, especially of the putative electron donor-binding module, is unclear. We isolated Arabidopsis thaliana crr23 (chlororespiratory reduction) mutants lacking NDH activity according to the absence of a transient increase in Chl fluorescence after actinic light illumination. Although CRR23 shows similarity to the NdhL subunit of cyanobacterial NDH-1, it has three transmembrane domains rather than the two in cyanobacterial NdhL. Unlike cyanobacterial NdhL, CRR23 is essential for stabilizing the NDH complex, which in turn is required for the accumulation of CRR23. Furthermore, CRR23 and NdhH, a subunit of chloroplast NDH, co-localized in blue-native gel. All the results indicate that CRR23 is an ortholog of cyanobacterial ndhL in Arabidopsis, despite its diversity of structure and function. 相似文献