首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   75篇
  免费   14篇
  89篇
  2023年   1篇
  2021年   1篇
  2019年   2篇
  2015年   4篇
  2014年   6篇
  2013年   5篇
  2012年   5篇
  2011年   14篇
  2010年   3篇
  2009年   4篇
  2008年   4篇
  2007年   2篇
  2006年   2篇
  2005年   3篇
  2004年   2篇
  2003年   4篇
  2002年   4篇
  2000年   4篇
  1999年   2篇
  1997年   3篇
  1996年   1篇
  1995年   4篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1989年   2篇
  1988年   1篇
  1984年   1篇
  1978年   2篇
排序方式: 共有89条查询结果,搜索用时 0 毫秒
1.
The root extract of Nauclea xanthoxylon (A.Chev.) Aubrév. displayed significant 50 % inhibition concentration (IC50s) of 0.57 and 1.26 μg/mL against chloroquine resistant and sensitive Plasmodium falciparum (Pf) Dd2 and 3D7 strains, respectively. Bio-guided fractionation led to an ethyl acetate fraction with IC50s of 2.68 and 1.85 μg/mL and subsequently, to the new quinovic acid saponin named xanthoxyloside ( 1 ) with IC50s of 0.33 and 1.30 μM, respectively against the tested strains. Further compounds obtained from ethyl acetate and hexane fractions were the known clethric acid ( 2 ), ursolic acid ( 3 ), quafrinoic acid ( 4 ), quinovic acid ( 5 ), quinovic acid 3-O-β-D-fucopyranoside ( 6 ), oleanolic acid ( 7 ), oleanolic acid 3-acetate ( 8 ), friedelin ( 9 ), β-sitosterol ( 10a ), stigmasterol ( 10b ) and stigmasterol 3-O-β-D-glucopyranoside ( 11 ). Their structures were characterised with the aid of comprehensive spectroscopic methods (1 and 2D NMR, Mass). Bio-assays were performed using nucleic acid gel stain (SYBR green I)-based fluorescence assay with chloroquine as reference. Extracts and compounds exhibited good selectivity indices (SIs) of >10. Significant antiplasmodial activities measured for the crude extract, the ethyl acetate fraction and xanthoxyloside ( 1 ) from that fraction can justify the use of the root of N. xanthoxylon in ethnomedicine to treat malaria.  相似文献   
2.
Antibody-based therapeutics are of great value for the treatment of human diseases. In addition to functional activity, affinity or physico-chemical properties, antibody specificity is considered to be one of the most crucial attributes for safety and efficacy. Consequently, appropriate studies are required before entering clinical trials.

High content protein arrays are widely applied to assess antibody specificity, but this commercial solution can only be applied to final therapeutic antibody candidates because such arrays are expensive and their throughput is limited. A flexible, high-throughput and economical assay that allows specificity testing of IgG or Fab molecules during early discovery is described here. The 384-well microtiter plate assay contains a comprehensive panel of 32 test proteins and uses electrochemiluminescence as readout.

The Protein Panel Profiling (3P) was used to analyze marketed therapeutic antibodies that all showed highly specific binding profiles. Subsequently, 3P was applied to antibody candidates from early discovery and the results compared well with those obtained with a commercially available high content protein chip. Our results suggest that 3P can be applied as an additional filter for lead selection, allowing the identification of favorable antibody candidates in early discovery and thereby increasing the speed and possibility of success in drug development.  相似文献   
3.
4.
Human adenovirus type 9 exclusively elicits mammary tumors in experimental animals, and the primary oncogenic determinant of this virus is the E4-ORF1 oncogene, as opposed to the well-known E1A and E1B oncogenes. The tumorigenic potential of E4-ORF1, as well as its ability to oncogenically stimulate phosphatidylinositol 3-kinase (PI3K), depends on a carboxyl-terminal PDZ domain-binding motif (PBM) that mediates interactions with several different membrane-associated cellular PDZ proteins, including MUPP1, PATJ, MAGI-1, ZO-2, and Dlg1. Nevertheless, because certain E4-ORF1 mutations that alter neither the sequence nor the function of the PBM abolish E4-ORF1-induced PI3K activation and cellular transformation, we reasoned that E4-ORF1 must possess an additional crucial protein element. In the present study, we identified seven E4-ORF1 amino acid residues that define this new element, designated domain 2, and showed that it mediates binding to a 70-kDa cellular phosphoprotein. We also discovered that domain 2 or the PBM independently promotes E4-ORF1 localization to cytoplasmic membrane vesicles and that this activity of domain 2 depends on E4-ORF1 trimerization. Consistent with the latter observation, molecular-modeling analyses predicted that E4-ORF1 trimerization brings together six out of seven domain 2 residues at each of the three subunit interfaces. These findings importantly demonstrate that PI3K activation and cellular transformation induced by E4-ORF1 require two separate protein interaction elements, domain 2 and the PBM, each of which targets E4-ORF1 to vesicle membranes in cells.  相似文献   
5.
Although death receptors and chemotherapeutic drugs activate distinct apoptosis signaling cascades, crosstalk between the extrinsic and intrinsic apoptosis pathway has been recognized as an important amplification mechanism. Best known in this regard is the amplification of the Fas (CD95) signal in hepatocytes via caspase 8-mediated cleavage of Bid and activation of the mitochondrial apoptosis pathway. Recent evidence, however, indicates that activation of other BH3-only proteins may also be critical for the crosstalk between death receptors and mitochondrial triggers. In this study, we show that TNF-related apoptosis-inducing ligand (TRAIL) and chemotherapeutic drugs synergistically induce apoptosis in various transformed and untransformed liver-derived cell lines, as well as in primary human hepatocytes. Both, preincubation with TRAIL as well as chemotherapeutic drugs could sensitize cells for apoptosis induction by the other respective trigger. TRAIL induced a strong and long lasting activation of Jun kinase, and activation of the BH3-only protein Bim. Consequently, synergistic induction of apoptosis by TRAIL and chemotherapeutic drugs was dependent on Jun kinase activity, and expression of Bim and Bid. These findings confirm a previously defined role of TRAIL and Bim in the regulation of hepatocyte apoptosis, and demonstrate that the TRAIL–Jun kinase–Bim axis is a major and important apoptosis amplification pathway in primary hepatocytes and liver tumor cells.  相似文献   
6.
This paper presents a new, versatile, portable miniaturized flow-injection immunosensor which is designed for field analysis. The temperature-controlled field prototype can run for 6h without external power supply. The bio-recognition element is an analyte-specific antibody immobilized on a gold surface of pyramidal structures inside an exchangeable single-use chip, which hosts also the enzyme-tracer and the sample reservoirs. The competition between the enzyme-tracer and the analyte for the antigen-binding sites of the antibodies yields in the final step a chemiluminescence signal that is inversely proportional to the concentration of analyte in the given range of detection. A proof of principle is shown for nitroaromatics and pesticides. The detection limits (DL; IC20) reached with the field prototype in the laboratory was below 0.1 microg l(-1) for 2,4,6-trinitrotoluene (TNT), and about 0.2 microg l(-1) for diuron and atrazine, respectively. Important aspects in this development were the design of the competition between analyte and enzyme-tracer, the unspecific signal due to unspecific binding and/or luminescence background signal, and the flow pattern inside the chip.  相似文献   
7.
8.
Liu LN  Aartsma TJ  Frese RN 《The FEBS journal》2008,275(12):3157-3166
Microscopic and light spectroscopic investigations on the supramolecular architecture of bacterial photosynthetic membranes have revealed the photosynthetic protein complexes to be arranged in a densely packed energy-transducing network. Protein packing may play a determining role in the formation of functional photosynthetic domains and membrane curvature. To further investigate in detail the packing effects of like-protein photosynthetic complexes, we report an atomic force microscopy investigation on artificially created 2D crystals of the peripheral photosynthetic light-harvesting complexes 2 (LH2's) from the bacterium Rhodobacter sphaeroides. Instead of the usually observed one or two different crystallization lattices for one specific preparation protocol, we find seven different packing lattices. The most abundant crystal types all show a tilting of LH2. Most surprisingly, although LH2 is a monomeric protein complex in vivo, we find an LH2 dimer packing motif. We further characterize two different dimer configurations: in type 1, the LH2's are tilted inwards, and in type 2, they are tilted outwards. Closer inspection of the lattices surrounding the LH2 dimers indicates their close resemblance to those LH2's that constitute a lattice of zig-zagging LH2's. In addition, analyses of the tilt of the LH2's within the zig-zag lattice and that observed within the dimers corroborate their similar packing motifs. The type 2 dimer configuration exhibits a tilt that, in the absence of up-down packing, could bend the lipid bilayer, leading to the strong curvature of the LH2 domains as observed in Rhodobacter sphaeroides photosynthetic membranes in vivo.  相似文献   
9.
Stereoselective reduction towards pharmaceutically potent products with multi‐chiral centers is an ongoing hot topic, but up to now catalysts for reductions of bulky aromatic substrates are rare. The NADPH‐dependent alcohol dehydrogenase from Ralstonia sp. (RADH) is an exception as it prefers sterically demanding substrates. Recent studies with this enzyme indicated outstanding potential for the reduction of various alpha‐hydroxy ketones, but were performed with crude cell extract, which hampered its detailed characterization. We have established a procedure for the purification and storage of RADH and found a significantly stabilizing effect by addition of CaCl2. Detailed analysis of the pH‐dependent activity and stability yielded a broad pH‐optimum (pH 6–9.5) for the reduction reaction and a sharp optimum of pH 10–11.5 for the oxidation reaction. The enzyme exhibits highest stability at pH 5.5–8 and 8–15°C; nevertheless, biotransformations can also be carried out at 25°C (half‐life 80 h). Under optimized reaction parameters a thorough study of the substrate range of RADH including the reduction of different aldehydes and ketones and the oxidation of a broad range of alcohols was conducted. In contrast to most other known alcohol dehydrogenases, RADH clearly prefers aromatic and cyclic aliphatic compounds, which makes this enzyme unique for conversion of space demanding substrates. Further, reductions are catalyzed with extremely high stereoselectivity (>99% enantio‐ and diastereomeric excess). In order to identify appropriate substrate and cofactor concentrations for biotransformations, kinetic parameters were determined for NADP(H) and selected substrates. Among these, we studied the reduction of both enantiomers of 2‐hydroxypropiophenone in more detail. Biotechnol. Bioeng. 2013; 110: 1838–1848. © 2013 Wiley Periodicals, Inc.  相似文献   
10.
One alternative approach for the treatment of lung cancer might be the activation of the immune system using vaccination strategies. However, most of clinical vaccination trials for lung cancer did not reach their primary end points, suggesting that lung cancer is of low immunogenicity. To provide additional experimental information about this important issue, we investigated which type of immune cells contributes to the protection from lung cancer development. Therefore, A/J mice induced for lung adenomas/adenocarcinomas by the tobacco-specific nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) were depleted of CD4+ or CD8+ T cells, CD11b+ macrophages, Gr-1+ neutrophils and asialo GM1+ natural killer (NK) cells. Subsequent analysis of tumour growth showed an increase in tumour number only in mice depleted of NK cells. Further asking by which mechanism NK cells suppressed tumour development, we neutralized several death ligands of the tumour necrosis factor (TNF) family known to be involved in NK cell-mediated cytotoxicity. However, neither depletion of TNF-α, TNF-related apoptosis-inducing ligand, TNF-like weak inducer of apoptosis or FasL alone nor in combination induced an augmentation of tumour burden. To show whether an alternative cell death pathway is involved, we next generated A/J mice deficient for perforin. After challenging with NNK, mice deficient for perforin showed an increase in tumour number and volume compared to wild-type A/J mice. In summary, our data suggest that NK cells and perforin-mediated cytolysis are critically involved in the protection from lung cancer giving promise for further immunotherapeutic strategies for this disease.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号