首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   32篇
  免费   4篇
  2024年   1篇
  2016年   4篇
  2011年   1篇
  2008年   1篇
  2006年   3篇
  2004年   1篇
  2003年   1篇
  2001年   1篇
  2000年   4篇
  1997年   1篇
  1996年   3篇
  1995年   3篇
  1994年   1篇
  1993年   3篇
  1991年   2篇
  1989年   2篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1984年   1篇
排序方式: 共有36条查询结果,搜索用时 15 毫秒
1.
The purpose of this study was to determine if the increase in ventilation induced by hypoxic stimulation of the carotid bodies (CB) persists after cessation of the stimulus in humans. I reasoned that a short-term potentiation (STP) of breathing, sometimes called an "afterdischarge," could be unmasked by combining hypoxia with exercise, because ventilation increases synergistically under these conditions. Seven young healthy men performed mild bicycle exercise (30% peak power) while breathing O2 for 1.5 min ("control" state), and their CB were then stimulated by 1.5 min of hypoxic exercise (10% O2--balance N2). CB stimulation was then terminated by changing the inspirate back to O2 as exercise continued. Inspiratory and expiratory duration (TI and TE) and inspiratory flow and its time integral [tidal volume (VT)] were measured with a pneumotachometer. Inspired minute ventilation (VI) and mean inspiratory flow (VT/TI) declined exponentially after the cessation of CB stimulation, with first-order time constants of 28.6 +/- 6.7 and 24.6 +/- 1.6 (SD) s, respectively. The slow decay of VI was due primarily to potentiation of both TI and TE, although the effect on the latter predominated. Additional experiments in six subjects showed that brief intense CB stimulation with four to five breaths of N2 during mild exercise induced STP of similar magnitude to that observed in the hypoxic exercise experiments. Finally, the imposition of hyperoxia during air breathing exercise at a level of respiratory drive similar to that induced by the hypoxic exercise did not change VI significantly.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
2.
3.
Mateika, J. H., E. Essif, and R. F. Fregosi. Effect ofhypoxia on abdominal motor unit activities in spontaneously breathingcats. J. Appl. Physiol. 81(6):2428-2435, 1996.These experiments were designed to examine thebehavior of external oblique motor units in spontaneously breathingcats during hypoxia and to estimate the contribution of recruitment andrate coding to changes in the integrated external obliqueelectromyogram (iEMG). Motor unit activities in the external obliquemuscle were identified while the cats expired against a positiveend-expiratory pressure (PEEP) of 1-2.5cmH2O. After localization of unitactivity, PEEP was removed, and recordings were made continuously for3-4 min during hyperoxia, normoxia, and hypoxia. A total of 35 single motor unit activities were recorded from 10 cats. At each level of fractional concentration of end-tidalO2, the motor unit activity wascharacterized by an abrupt increase in mean discharge frequency, at~30% of expiratory time, which then continued to increase gradually or remained constant before declining abruptly at the end ofexpiration. The transition from hyperoxia to normoxia and hypoxia wasaccompanied by an increase in the number of active motor units (16 of35, 20 of 35, and 29 of 35, respectively) and by an increase in the mean discharge frequency of those units active during hyperoxia. Thechanges in motor unit activity recorded during hypoxia were accompaniedby a significant increase in the average peak amplitude of theabdominal iEMG. Linear regression analysis revealed that motor unitrate coding was responsible for close to 60% of the increase in peakiEMG amplitude. The changes in abdominal motor unit activity and theexternal oblique iEMG that occurred during hypoxia were abolished ifthe arterial PCO2 was allowed tofall. We conclude that external oblique motor units are activated during the latter two-thirds of expiration and that rate coding andrecruitment contribute almost equally to the increase in expiratory muscle activity that occurs with hypoxia. In addition, the excitation of abdominal motor units during hypoxia is critically dependent onchanges in CO2 and/ortidal volume.

  相似文献   
4.
Maternal smoking or use of other products containing nicotine during pregnancy can have significant adverse consequences for respiratory function in neonates. We have shown, in previous studies, that developmental nicotine exposure (DNE) in a model system compromises the normal function of respiratory circuits within the brainstem. The effects of DNE include alterations in the excitability and synaptic interactions of the hypoglossal motoneurons, which innervate muscles of the tongue. This study was undertaken to test the hypothesis that these functional consequences of DNE are accompanied by changes in the dendritic morphology of hypoglossal motoneurons. Hypoglossal motoneurons in brain stem slices were filled with neurobiotin during whole‐cell patch clamp recordings and subjected to histological processing to reveal dendrites. Morphometric analysis, including the Sholl method, revealed significant effects of DNE on dendritic branching patterns. In particular, whereas within the first five postnatal days there was significant growth of the higher‐order dendritic branches of motoneurons from control animals, the growth was compromised in motoneurons from neonates that were subjected to DNE. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 76: 1125–1137, 2016  相似文献   
5.
Our purpose was to determine the influence of posture and breathing route on electromyographic (EMG) activities of nasal dilator (NDM) and genioglossus (GG) muscles during exercise. Nasal and oral airflow rates and EMG activities of the NDM and GG were recorded in 10 subjects at rest and during upright and supine incremental cycling exercise to exhaustion. EMG activities immediately before and after the switch from nasal to oronasal breathing were also determined for those subjects who demonstrated a clear switch point (n = 7). NDM and GG EMG activities were significantly correlated with increases in nasal, oral, and total ventilatory rates during exercise, and these relationships were not altered by posture. In both upright and supine exercise, NDM activity rose more sharply as a function of nasal inspired ventilation compared with total or oral inspired ventilation (P < 0.01), but GG activity showed no significant breathing-route dependence. Peak NDM integrated EMG activity decreased (P = 0.008), and peak GG integrated EMG activity increased (P = 0.032) coincident with the switch from nasal to oronasal breathing. In conclusion, 1) neural drive to NDM and GG increases as a function of exercise intensity, but the increase is unaltered by posture; 2) NDM activity is breathing-route dependent in steady-state exercise, but GG activity is not; and 3) drive to both muscles changes significantly at the switch point, but the change in GG activity is more variable and is often transient. This suggests that factors other than the breathing route dominate drive to the GG soon after the initial changes in the configuration of the oronasal airway are made.  相似文献   
6.
7.
This study was designed to investigate the influence of hypoxia-evoked augmented breaths (ABs) on respiratory-related tongue protrudor and retractor muscle activities and inspiratory pump muscle output. Genioglossus (GG) and hyoglossus (HG) electromyogram (EMG) activities and respiratory-related tongue movements were compared with peak esophageal pressure (Pes; negative change in pressure during inspiration) and minute Pes (Pes x respiratory frequency = Pes/min) before and after ABs evoked by sustained poikilocapnic, isocapnic, and hypercapnic hypoxia in spontaneously breathing, anesthetized rats. ABs evoked by poikilocapnic and isocapnic hypoxia triggered long-lasting (duration at least 10 respiratory cycles) reductions in GG and HG EMG activities and tongue movements relative to pre-AB levels, but Pes was reduced transiently (duration of <10 respiratory cycles) after ABs. Adding 7% CO(2) to the hypoxic inspirate had no effect on the frequency of evoked ABs, but this prevented long-term declines in tongue muscle activities. Bilateral vagotomy abolished hypoxia-induced ABs and stabilized drive to the tongue muscles during each hypoxic condition. We conclude that, in the rat, hypoxia-evoked ABs 1) elicit long-lasting reductions in protrudor and retractor tongue muscle activities, 2) produce short-term declines in inspiratory pump muscle output, and 3) are mediated by vagal afferents. The more prolonged reductions in pharyngeal airway vs. pump muscle activities may lead to upper airway narrowing or collapse after spontaneous ABs.  相似文献   
8.
We tested the hypothesis that pharyngeal geometry and soft tissue dimensions correlate with the severity of sleep-disordered breathing. Magnetic resonance images of the pharynx were obtained in 18 awake children, 7-12 yr of age, with obstructive apnea-hypopnea index (OAHI) values ranging from 1.81 to 24.2 events/h. Subjects were divided into low-OAHI (n = 9) and high-OAHI (n = 9) groups [2.8 +/- 0.7 and 13.5 +/- 4.9 (SD) P < 0.001]. The OAHI correlated positively with the size of the tonsils (r2 = 0.42, P = 0.024) and soft palate (r2 = 0.33, P = 0.049) and inversely with the volume of the oropharyx (r2 = 0.42, P = 0.038). The narrowest point in the pharyngeal airway was smaller in the high-compared with the low-OAHI group (4.4 +/- 1.2 vs. 6.0 +/- 1.3 mm; P = 0.024), and this point was in the retropalatal airway in all but two subjects. The airway cross-sectional area (CSA)-airway length relation showed that the high-OAHI group had a narrower retropapatal airway than the low-OAHI group, particularly in the retropalatal region where the soft palate, adenoids, and tonsils overlap (P = 0.001). The "retropalatal air space," which we defined as the ratio of the retropalatal airway CSA to the CSA of the soft palate, correlated inversely with the OAHI (r2 = 0.49, P = 0.001). We conclude that 7- to 12-yr-old children with a narrow retropalatal air space have significantly more apneas and hypopneas during sleep compared with children with relatively unobstructed retropalatal airways.  相似文献   
9.
There is evidence that narrowing or collapse of the pharynx can contribute to obstructive sleep-disordered breathing (SDB) in adults and children. However, studies in children have focused on those with relatively severe SDB who generally were recruited from sleep clinics. It is unclear whether children with mild SDB who primarily have hypopneas, and not frank apnea, also have more collapsible airways. We estimated airway collapsibility in 10 control subjects (9.4 +/- 0.5 yr old; 1.9 +/- 0.2 hypopneas/h) and 7 children with mild SDB (10.6 +/- 0.5 yr old; 11.5 +/- 0.1 hypopneas/h) during stable, non-rapid eye movement sleep. None of the subjects had clinically significant enlargement of the tonsils or adenoids, nor had any undergone previous tonsillectomy or adenoidectomy. Airway collapsibility was measured by brief (2-breath duration) and sudden reductions in pharyngeal pressure by connecting the breathing mask to a negative pressure source. Negative pressure applications ranging from -1 to -20 cmH(2)O were randomly applied in each subject while respiratory airflow and mask pressure were measured. Flow-pressure curves were constructed for each subject, and the x-intercept gave the pressure at zero flow, the so-called critical pressure of the upper airway (Pcrit). Pcrit was significantly higher in children with SDB than in controls (-10.8 +/- 2.8 vs. -15.7 +/- 1.2 cmH(2)O; P < 0.05). There were no significant differences in the slopes of the pressure-flow relations or in baseline airflow resistance. These data support the concept that intrinsic pharyngeal collapsibility contributes to mild SDB in children.  相似文献   
10.
Our purpose was to test the hypothesis that hypoxia potentiates exercise-induced sympathetic neural activation in humans. In 15 young (20-30 yr) healthy subjects, lower leg muscle sympathetic nerve activity (MSNA, peroneal nerve; microneurography), venous plasma norepinephrine (PNE) concentrations, heart rate, and arterial blood pressure were measured at rest and in response to rhythmic handgrip exercise performed during normoxia or isocapnic hypoxia (inspired O2 concn of 10%). Study I (n = 7): Brief (3-4 min) hypoxia at rest did not alter MSNA, PNE, or arterial pressure but did induce tachycardia [17 +/- 3 (SE) beats/min; P less than 0.05]. During exercise at 50% of maximum, the increases in MSNA (346 +/- 81 vs. 207 +/- 14% of control), PNE (175 +/- 25 vs. 120 +/- 11% of control), and heart rate (36 +/- 2 vs. 20 +/- 2 beats/min) were greater during hypoxia than during normoxia (P less than 0.05), whereas the arterial pressure response was not different (26 +/- 4 vs. 25 +/- 4 mmHg). The increase in MSNA during hypoxic exercise also was greater than the simple sum of the separate responses to hypoxia and normoxic exercise (P less than 0.05). Study II (n = 8): In contrast to study I, during 2 min of exercise (30% max) performed under conditions of circulatory arrest and 2 min of postexercise circulatory arrest (local ischemia), the MSNA and PNE responses were similar during systemic hypoxia and normoxia. Arm ischemia without exercise had no influence on any variable during hypoxia or normoxia.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号