首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   51篇
  免费   4篇
  2021年   1篇
  2018年   1篇
  2014年   2篇
  2013年   4篇
  2012年   8篇
  2011年   2篇
  2010年   1篇
  2009年   2篇
  2008年   2篇
  2007年   3篇
  2005年   1篇
  2004年   3篇
  2003年   2篇
  2002年   3篇
  2001年   5篇
  1999年   3篇
  1998年   3篇
  1997年   1篇
  1996年   1篇
  1995年   2篇
  1994年   2篇
  1993年   1篇
  1992年   1篇
  1989年   1篇
排序方式: 共有55条查询结果,搜索用时 328 毫秒
1.
The impala transposon of Fusarium oxysporum is an active element. We demonstrated that the imp160 copy, transposed into the gene encoding nitrate reductase, is an autonomous element, since it excises from this gene and reinserts at a new genomic position in backgrounds free of active elements. An element in which the transposase gene was replaced by a hygromycin B resistance gene was used (1) to demonstrate the absence of endogenous transposase in several F. oxysporum strains and (2) to check the ability of different genomic copies of impala to transactivate this defective element. This two-component system allowed the identification of autonomous elements in two impala subfamilies and revealed that transactivation can occur between highly divergent elements. We also demonstrate that the autonomous copy transposes in a closely related species complex, F. moniliforme, in a fashion similar to that observed in F. oxysporium. The ability of impala to function as a two-component system and to transpose in a heterologous host promises further advances in our understanding of the factors that modulate transposition efficiency and demonstrates the potential of impala as a means of establishing a transposon tagging system for a wide range of fungal species.  相似文献   
2.
Autonomous mobility of different copies of the Fot1 element was determined for several strains of the fungal plant pathogen Fusarium oxysporum to develop a transposon tagging system. Two Fot1 copies inserted into the third intron of the nitrate reductase structural gene (niaD) were separately introduced into two genetic backgrounds devoid of endogenous Fot1 elements. Mobility of these copies was observed through a phenotypic assay for excision based on the restoration of nitrate reductase activity. Inactivation of the Fot1 transposase open reading frame (frameshift, deletion, or disruption) prevented excision in strains free of Fot1 elements. Molecular analysis of the Nia+ revertant strains showed that the Fot1 element reintegrated frequently into new genomic sites after excision and that it can transpose from the introduced niaD gene into a different chromosome. Sequence analysis of several Fot1 excision sites revealed the so-called footprint left by this transposable element. Three reinserted Fot1 elements were cloned and the DNA sequences flanking the transposon were determined using inverse polymerase chain reaction. In all cases, the transposon was inserted into a TA dinucleotide and created the characteristic TA target site duplication. The availability of autonomous Fot1 copies will now permit the development of an efficient two-component transposon tagging system comprising a trans-activator element supplying transposase and a cis-responsive marked element.  相似文献   
3.
Populations of Fusarium oxysporum f. sp. albedinis, the causal agent of Bayoud disease of date palm, are derivatives of a single clonal lineage and exhibit very similar Fot 1 hybridization patterns. In order to develop a sensitive diagnostic tool for F. oxysporum f. sp. albedinis detection, we isolated several DNA clones containing a copy of the transposable element Fot 1 from a genomic library of the date palm pathogen. Regions flanking the insertion sites were sequenced, and these sequences were used to design PCR primers that amplify the DNA regions at several Fot 1 insertion sites. When tested on a large sample of Fusarium isolates, including 286 F. oxysporum f. sp. albedinis isolates, 17 other special forms, nonpathogenic F. oxysporum isolates from palm grove soils, and 8 other Fusarium species, the primer pair TL3-FOA28 allowed amplification of a 400-bp fragment found only in F. oxysporum f. sp. albedinis. Sequence analysis showed that one of the Fot 1 copies was truncated, lacking 182 bp at its 3′ terminus. The primer pair BI03-FOA1 amplified a 204-bp fragment which overlapped the Fot 1 truncated copy and its 3′ site of insertion in the F. oxysporum f. sp. albedinis genome and identified 95% of the isolates. The primer pairs BIO3-FOA1 and TL3-FOA28 used in PCR assays thus provide a useful diagnostic tool for F. oxysporum f. sp. albedinis isolates.  相似文献   
4.
The transposable element impala is a member of the widespread superfamily of Tc1-mariner transposons, identified in the genome of the plant pathogenic fungus Fusarium oxysporum. This element is present in a low copy number and is actively transposed in the F.?oxysporum strain F24 that is pathogenic for melons. The structure of the impala family was investigated by cloning and sequencing all the genomic copies. The analysis revealed that this family is composed of full-length and truncated copies. Four copies contained a long open reading frame that could potentially encode a transposase of 340 amino acids. The presence of conserved functional domains (a nuclear localisation signal, a catalytic DDE domain and a DNA-binding domain) suggests that these four copies may be autonomous elements. Sequence comparisons and phylogenetic analysis of the impala copies defined three subfamilies, which differ by a high level of nucleotide polymorphism (around 20%). The coexistence of these divergent subfamilies in the same genome may indicate that the impala family is of ancient origin and/or that it arose by successive horizontal transmission events.  相似文献   
5.
6.
XRCC1 protein is essential for mammalian viability and is required for the efficient repair of single strand breaks (SSBs) and damaged bases in DNA. XRCC1-deficient cells are genetically unstable and sensitive to DNA damaging agents. XRCC1 has no known enzymatic activity and is thought to act as a scaffold protein for both SSB and base excision repair activities. To further define the defects leading to genetic instability in XRCC1-deficient cells, we overexpressed the AP endonuclease APE1, shown previously to interact with and be stimulated by XRCC1. Here, we report that the overexpression of APE1 can compensate for the impaired capability of XRCC1-deficient cells to repair SSBs induced by oxidative DNA damage, both in vivo and in whole-cell extracts. We show that, for this kind of damage, the repair of blocked DNA ends is rate limiting and can be performed by APE1. Conversely, APE1 overproduction resulted in a 3-fold increase in the sensitivity of XRCC1-deficient cells to an alkylating agent, most probably due to the accumulation of SSBs. Finally, the overproduction of APE1 results in increases of 40% in the frequency of micronuclei and 33% in sister chromatid exchanges of XRCC1 cells. These data suggest that the spontaneous generation of AP sites could be at the origin of the SSBs responsible for the spontaneous genetic instability characteristic of XRCC1-deficient cells.  相似文献   
7.
We have performed a genome-wide analysis of the mimp family of miniature inverted-repeat transposable elements, taking advantage of the recent release of the F. oxysporum genome sequence. Using different approaches, we detected 103 mimp elements, corresponding to 75 nonredundant copies, half of which are located on a single small chromosome. Phylogenetic analysis identified at least six subfamilies, all remarkably homogeneous in size and sequence. Based on high sequence identity in the terminal inverted repeats (TIRs), mimp elements were connected to different impala members. To gain insights into the mechanisms at the origin and amplification of mimps, we studied the potential of impala to cross-mobilize different mimps, native but also created de novo by inserting a short DNA segment between two TIRs. Our results show that TIR sequences are the main requirement for mobilization but that additional parameters in the internal region are likely to influence transposition efficiency. Finally, we show that integration site preference of native versus newly transposed mimps greatly varies in the host genomes used in this study. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. Nucleotide sequences of novel mimp3 and mimp4 elements are available under GenBank accession numbers EU833100 and EU833101, respectively. Coordinates of mimp5, mimp6 and of non-classified mimp copies are indicated in Supplementary Table 1.  相似文献   
8.
Novel Polyketide Synthase from Nectria haematococca   总被引:1,自引:0,他引:1       下载免费PDF全文
We identified a polyketide synthase (PKS) gene, pksN, from a strain of Nectria haematococca by complementing a mutant unable to synthesize a red perithecial pigment. pksN encodes a 2,106-amino-acid polypeptide with conserved motifs characteristic of type I PKS enzymatic domains: β-ketoacyl synthase, acyltransferase, duplicated acyl carrier proteins, and thioesterase. The pksN product groups with the Aspergillus nidulans WA-type PKSs involved in conidial pigmentation and melanin, bikaverin, and aflatoxin biosynthetic pathways. Inactivation of pksN did not cause any visible change in fungal growth, asexual sporulation, or ascospore formation, suggesting that it is involved in a specific developmental function. We propose that pksN encodes a novel PKS required for the perithecial red pigment biosynthesis.  相似文献   
9.
An autonomous impala transposon trapped in Fusarium oxysporum by insertion within the niaD gene encoding nitrate reductase was introduced in the genome of the fungus Penicillium griseoroseum, a producer of pectinase enzymes. Through a phenotypic assay, we demonstrate that this element is able to excise from the niaD gene and to reinsert at new genomic positions. As in the original host, impala inserts into a TA site and footprints left by impala excisions are generally 5 bp. The fact that impala is able to transpose in P. griseoroseum offers the opportunity to develop a gene-tagging system based on this element with the objective to detect and clone genes related in pectinase production.  相似文献   
10.
The plant-pathogenic fungus Fusarium oxysporum was successfully transformed with the beta-D-glucuronidase gene from Escherichia coli (gusA) (GUS system) in combination with the gene for nitrate reductase (niaD) as the selectable marker. The frequency of cotransformation, as determined by GUS expression on plates containing medium supplemented with 5-bromo-4-chloro-3-indolyl glucuronide (GUS+), was very high (up to 75%). Southern hybridization analyses of GUS+ transformants revealed that single or multiple copies of the gusA gene were integrated into the genomes. High levels of GUS activity are expressed in some transformants, but activity in F. oxysporum does not appear to be correlated with the copy number of the gusA gene. Since the highest activity was found in a transformant with a single copy, it can be assumed that sequence elements of F. oxysporum integrated upstream of the gene can act as a promoter or enhancer. Expression of the gusA gene was also detected during growth of the fungus in plants, indicating that the GUS system can be used as a sensitive and easy reporter gene assay in F. oxysporum.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号