首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   29篇
  免费   1篇
  2022年   2篇
  2021年   2篇
  2019年   1篇
  2016年   2篇
  2014年   3篇
  2012年   1篇
  2011年   2篇
  2010年   3篇
  2009年   1篇
  2008年   1篇
  2007年   2篇
  2006年   1篇
  2004年   3篇
  2002年   3篇
  1997年   1篇
  1996年   1篇
  1989年   1篇
排序方式: 共有30条查询结果,搜索用时 265 毫秒
1.
Late‐onset retinal degeneration (L‐ORD) is an autosomal dominant macular degeneration characterized by the formation of sub‐retinal pigment epithelium (RPE) deposits and neuroretinal atrophy. L‐ORD results from mutations in the C1q‐tumor necrosis factor‐5 protein (CTRP5), encoded by the CTRP5/C1QTNF5 gene. To understand the mechanism underlying L‐ORD pathology, we used a human cDNA library yeast two‐hybrid screen to identify interacting partners of CTRP5. Additionally, we analyzed the Bruch's membrane/choroid (BM‐Ch) from wild‐type (Wt), heterozygous S163R Ctrp5 mutation knock‐in (Ctrp5S163R/wt), and homozygous knock‐in (Ctrp5S163R/S163R) mice using mass spectrometry. Both approaches showed an association between CTRP5 and HTRA1 via its C‐terminal PDZ‐binding motif, stimulation of the HTRA1 protease activity by CTRP5, and CTRP5 serving as an HTRA1 substrate. The S163R‐CTRP5 protein also binds to HTRA1 but is resistant to HTRA1‐mediated cleavage. Immunohistochemistry and proteomic analysis showed significant accumulation of CTRP5 and HTRA1 in BM‐Ch of Ctrp5S163R/S163R and Ctrp5S163R/wt mice compared with Wt. Additional extracellular matrix (ECM) components that are HTRA1 substrates also accumulated in these mice. These results implicate HTRA1 and its interaction with CTRP5 in L‐ORD pathology.  相似文献   
2.
Within cancer research, phage display libraries have been widely used for the identification of tumor targeting peptides and antibodies. Additionally, phages are known to be highly immunogenic; therefore we evaluated the immunotherapeutic potential of tumor specific phages to treat established solid tumors in a mouse model of melanoma. We developed two tumor specific phages, one derived from a peptide phage display library and one Fab expressing phage with known specificity, for the treatment of mice bearing palpable B16-F10 or B16/A2Kb tumors. Therapy in B16-F10 tumor bearing mice with tumor specific phages was superior to treatment with non-tumor specific phages and lead to delayed tumor growth and increased survival. In B16/A2Kb tumor bearing mice, therapy with tumor specific phages resulted in complete tumor regression and long-term survival in 50% of the mice. Histological analysis of tumors undergoing treatment with tumor specific phages revealed that phage administration induced a massive infiltration of polymorphonuclear neutrophils. Furthermore, phages induced secretion of IL-12 (p70) and IFN-γ as measured in mouse splenocyte culture supernatants. These results demonstrate a novel, immunotherapeutic cancer treatment showing that tumor specific phages can promote regression of established tumors by recruitment of inflammatory cells and induction of Th1 cytokines.  相似文献   
3.
The B16-F10 mouse model of melanoma is a widely used model to study many aspects of cancer biology and therapeutics in a solid tumor. Melanomas aggressively progress within a dynamic microenvironment containing in addition to tumor cells, stroma cells and components such as fibroblasts, immune cells, vascular cells, extracellular matrix (ECM) and extracellular molecules. The goal of this study was to elucidate the processes of tumor progression by identifying differentially expressed proteins in the tumor mass during specific stages of tumor growth. A comparative proteome analysis was performed on B16-F10 derived tumors in C57BL/6 mice at days 3, 5, 7, and 10. Statistical approaches were used to determine quantitative differential protein expression at each tumor time stage. Hierarchical clustering of 44 protein spots (p < 0.01) revealed a progressive change in the tumor mass when all 4 time stages were classified together, but there was a clear switch in expression of these proteins between the day 5 and the day 7 tumors. A trend analysis showed 53 protein spots (p < 0.001) following 6 predominant kinetic paths of expression as the tumor progressed. The protein spots were then identified using MALDI-TOF mass spectrometry. Proteins involved in glycolysis, inflammation, wounding, superoxide metabolism, and chemotaxis increased during tumorigenesis. From day 3 to day 7 VEGF and active cathepsin D were induced 7-fold and 4-fold, respectively. Proteins involved in electron transport, protein folding, blood coagulation, and transport decreased during tumorigenesis. This work illustrates changes in the biology of the B16-F10 tumor mass during tumor progression.  相似文献   
4.
Anabolic metabolism of carbon in mammals is mediated via the one- and two-carbon carriers S-adenosyl methionine and acetyl-coenzyme A. In contrast, anabolic metabolism of three-carbon units via propionate has not been shown to extensively occur. Mammals are primarily thought to oxidize the three-carbon short chain fatty acid propionate by shunting propionyl-CoA to succinyl-CoA for entry into the TCA cycle. Here, we found that this may not be absolute as, in mammals, one nonoxidative fate of propionyl-CoA is to condense to two three-carbon units into a six-carbon trans-2-methyl-2-pentenoyl-CoA (2M2PE-CoA). We confirmed this reaction pathway using purified protein extracts provided limited substrates and verified the product via LC-MS using a synthetic standard. In whole-body in vivo stable isotope tracing following infusion of 13C-labeled valine at steady state, 2M2PE-CoA was found to form via propionyl-CoA in multiple murine tissues, including heart, kidney, and to a lesser degree, in brown adipose tissue, liver, and tibialis anterior muscle. Using ex vivo isotope tracing, we found that 2M2PE-CoA also formed in human myocardial tissue incubated with propionate to a limited extent. While the complete enzymology of this pathway remains to be elucidated, these results confirm the in vivo existence of at least one anabolic three- to six-carbon reaction conserved in humans and mice that utilizes propionate.  相似文献   
5.
6.
7.
 The electrochemistry of a water-soluble fragment from the CuA domain of Thermus thermophilus cytochrome ba 3 has been investigated. At 25  °C, CuA exhibits a reversible reduction at a pyridine-4-aldehydesemicarbazone-modified gold electrode (0.1 M Tris, pH 8) with E° = 0.24 V vs NHE. Thermodynamic parameters for the [Cu(Cys)2Cu]+/0 electrode reaction were determined by variable-temperature electrochemistry (ΔS°rc = –5.4(12) eu, ΔS° = –21.0(12) eu, ΔH° = –11.9(4) kcal/mol;ΔG° = –5.6 (11) kcal/mol). The relatively small reaction entropy is consistent with a low reorganization energy for [Cu(Cys)2Cu]+/0 electron transfer. An irreversible oxidation of [Cu(Cys)2Cu]+ at 1 V vs NHE confirms that the CuII:CuII state of CuA is significantly destabilized relative to the CuII state of analogous blue-copper proteins. Received: 3 June 1996 / Accepted: 26 August 1996  相似文献   
8.
Copper (Cu) is essential for development and proliferation, yet the cellular requirements for Cu in these processes are not well defined. We report that Cu plays an unanticipated role in the mitogen-activated protein (MAP) kinase pathway. Ablation of the Ctr1 high-affinity Cu transporter in flies and mouse cells, mutation of Ctr1, and Cu chelators all reduce the ability of the MAP kinase kinase Mek1 to phosphorylate the MAP kinase Erk. Moreover, mice bearing a cardiac-tissue-specific knockout of Ctr1 are deficient in Erk phosphorylation in cardiac tissue. in vitro investigations reveal that recombinant Mek1 binds two Cu atoms with high affinity and that Cu enhances Mek1 phosphorylation of Erk in a dose-dependent fashion. Coimmunoprecipitation experiments suggest that Cu is important for promoting the Mek1-Erk physical interaction that precedes the phosphorylation of Erk by Mek1. These results demonstrate a role for Ctr1 and Cu in activating a pathway well known to play a key role in normal physiology and in cancer.  相似文献   
9.
Aldose reductase (ALR2) is susceptible to oxidative inactivation by copper ion. The mechanism underlying the reversible modification of ALR2 was studied by mass spectrometry, circular dichroism, and molecular modeling approaches on the enzyme purified from bovine lens and on wild type and mutant recombinant forms of the human placental and rat lens ALR2. Two equivalents of copper ion were required to inactivate ALR2: one remained weakly bound to the oxidized protein whereas the other was strongly retained by the inactive enzyme. Cys(303) appeared to be the essential residue for enzyme inactivation, because the human C303S mutant was the only enzyme form tested that was not inactivated by copper treatment. The final products of human and bovine ALR2 oxidation contained the intramolecular disulfide bond Cys(298)-Cys(303). However, a Cys(80)-Cys(303) disulfide could also be formed. Evidence for an intramolecular rearrangement of the Cys(80)-Cys(303) disulfide to the more stable product Cys(298)-Cys(303) is provided. Molecular modeling of the holoenzyme supports the observed copper sequestration as well as the generation of the Cys(80)-Cys(303) disulfide. However, no evidence of conditions favoring the formation of the Cys(298)-Cys(303) disulfide was observed. Our proposal is that the generation of the Cys(298)-Cys(303) disulfide, either directly or by rearrangement of the Cys(80)-Cys(303) disulfide, may be induced by the release of the cofactor from ALR2 undergoing oxidation. The occurrence of a less interactive site for the cofactor would also provide the rationale for the lack of activity of the disulfide enzyme forms.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号