首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2257篇
  免费   218篇
  国内免费   55篇
  2530篇
  2024年   5篇
  2023年   45篇
  2022年   67篇
  2021年   112篇
  2020年   67篇
  2019年   75篇
  2018年   83篇
  2017年   62篇
  2016年   87篇
  2015年   135篇
  2014年   148篇
  2013年   168篇
  2012年   192篇
  2011年   183篇
  2010年   100篇
  2009年   93篇
  2008年   118篇
  2007年   96篇
  2006年   77篇
  2005年   80篇
  2004年   57篇
  2003年   59篇
  2002年   54篇
  2001年   29篇
  2000年   39篇
  1999年   47篇
  1998年   7篇
  1997年   21篇
  1996年   25篇
  1995年   9篇
  1994年   20篇
  1993年   4篇
  1992年   23篇
  1991年   14篇
  1990年   20篇
  1989年   15篇
  1988年   16篇
  1987年   7篇
  1986年   9篇
  1985年   11篇
  1984年   11篇
  1983年   10篇
  1982年   2篇
  1981年   3篇
  1980年   6篇
  1979年   6篇
  1978年   3篇
  1977年   4篇
  1976年   2篇
  1965年   1篇
排序方式: 共有2530条查询结果,搜索用时 15 毫秒
1.
2.
Mangroves are among the most carbon-dense ecosystems worldwide. Most of the carbon in mangroves is found belowground, and root production might be an important control of carbon accumulation, but has been rarely quantified and understood at the global scale. Here, we determined the global mangrove root production rate and its controls using a systematic review and a recently formalised, spatially explicit mangrove typology framework based on geomorphological settings. We found that global mangrove root production averaged ~770 ± 202 g of dry biomass m−2 year−1 globally, which is much higher than previously reported and close to the root production of the most productive tropical forests. Geomorphological settings exerted marked control over root production together with air temperature and precipitation (r2 ≈ 30%, p < .001). Our review shows that individual global changes (e.g. warming, eutrophication, drought) have antagonist effects on root production, but they have rarely been studied in combination. Based on this newly established root production rate, root-derived carbon might account for most of the total carbon buried in mangroves, and 19 Tg C lost in mangroves each year (e.g. as CO2). Inclusion of root production measurements in understudied geomorphological settings (i.e. deltas), regions (Indonesia, South America and Africa) and soil depth (>40 cm), as well as the creation of a mangrove root trait database will push forward our understanding of the global mangrove carbon cycle for now and the future. Overall, this review presents a comprehensive analysis of root production in mangroves, and highlights the central role of root production in the global mangrove carbon budget.  相似文献   
3.
4.
5.
In this paper, we examined in detail the ability of anti-1F7 to modulate 1F7 (CD26) surface expression as well as analyzed the functional relationship between the surface expression of CD3, CD2, and CD26 and human T cell activation. We showed that anti-1F7-induced modulation is an energy-dependent process that occurs via capping and internalization of the Ag-antibody complex. Although the recovery rate for Ag reexpression of 1F7 following optimal modulation is relatively delayed, reexpression of 1F7 is greatly accelerated following phorbol ester treatment. Most importantly, we demonstrated that modulation of the CD26 Ag leads to an enhancement in the proliferative activity of modulated human T cells treated with anti-CD3 or anti-CD2, which is preceded by an enhancement in Ca2+ mobilization. CD26 modulation also led to an increase in anti-CD3- or anti-CD2-mediated T cell clone proliferation. Finally, whereas modulation of the CD26 Ag has an effect on CD3- or CD2-induced T cell activation, modulation of the CD3/TCR complex inhibits the proliferative response of T cells incubated with anti-CD3 plus anti-1F7 or anti-CD2 plus anti-1F7. However, modulation of the CD2 structure does not affect anti-CD3- plus anti-1F7-induced human T cell activation. The above results thus provide additional evidence that the CD26 Ag plays an integral role in the regulation of human T cell activation.  相似文献   
6.
7.
Phage therapy may become a complement to antibiotics in the treatment of chronic Pseudomonas aeruginosa infection. To design efficient therapeutic cocktails, the genetic diversity of the species and the spectrum of susceptibility to bacteriophages must be investigated. Bacterial strains showing high levels of phage resistance need to be identified in order to decipher the underlying mechanisms. Here we have selected genetically diverse P. aeruginosa strains from cystic fibrosis patients and tested their susceptibility to a large collection of phages. Based on plaque morphology and restriction profiles, six different phages were purified from “pyophage”, a commercial cocktail directed against five different bacterial species, including P. aeruginosa. Characterization of these phages by electron microscopy and sequencing of genome fragments showed that they belong to 4 different genera. Among 47 P. aeruginosa strains, 13 were not lysed by any of the isolated phages individually or by pyophage. We isolated two new phages that could lyse some of these strains, and their genomes were sequenced. The presence/absence of a CRISPR-Cas system (Clustered Regularly Interspaced Short Palindromic Repeats and Crisper associated genes) was investigated to evaluate the role of the system in phage resistance. Altogether, the results show that some P. aeruginosa strains cannot support the growth of any of the tested phages belonging to 5 different genera, and suggest that the CRISPR-Cas system is not a major defence mechanism against these lytic phages.  相似文献   
8.
9.
Cieplak M  Hoang TX  Robbins MO 《Proteins》2004,56(2):285-297
The effect of temperature on mechanical unfolding of proteins is studied using a Go-like model with a realistic contact map and Lennard-Jones contact interactions. The behavior of the I27 domain of titin and its serial repeats is contrasted to that of simple secondary structures. In all cases, thermal fluctuations accelerate the unraveling process, decreasing the unfolding force nearly linearly at low temperatures. However, differences in bonding geometry lead to different sensitivity to temperature and different changes in the unfolding pattern. Due to its special native-state geometry, titin is much more thermally and elastically stable than the secondary structures. At low temperatures, serial repeats of titin show a parallel unfolding of all domains to an intermediate state, followed by serial unfolding of the domains. At high temperatures, all domains unfold simultaneously, and the unfolding distance decreases monotonically with the contact order, that is, the sequence distance between the amino acids that form the native contact.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号