首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1211篇
  免费   81篇
  国内免费   2篇
  1294篇
  2023年   5篇
  2022年   17篇
  2021年   37篇
  2020年   19篇
  2019年   29篇
  2018年   37篇
  2017年   28篇
  2016年   34篇
  2015年   52篇
  2014年   59篇
  2013年   78篇
  2012年   110篇
  2011年   99篇
  2010年   61篇
  2009年   52篇
  2008年   81篇
  2007年   83篇
  2006年   70篇
  2005年   65篇
  2004年   63篇
  2003年   76篇
  2002年   58篇
  2001年   7篇
  2000年   5篇
  1999年   9篇
  1998年   6篇
  1997年   6篇
  1996年   5篇
  1995年   5篇
  1994年   6篇
  1993年   2篇
  1992年   5篇
  1991年   4篇
  1990年   3篇
  1987年   1篇
  1985年   2篇
  1984年   3篇
  1983年   3篇
  1982年   2篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
  1978年   2篇
  1976年   1篇
  1970年   1篇
排序方式: 共有1294条查询结果,搜索用时 0 毫秒
1.
2.
Methicillin-resistant Staphylococcus aureus (MRSA) is a major cause of serious hospital-acquired infections and is responsible for significant morbidity and mortality in residential care facilities. New agents against MRSA are needed to combat rising resistance to current antibiotics. We recently reported 5-hydroxy-3-methyl-1-phenyl-1H-pyrazole-4-carbodithioate (HMPC) as a new bacteriostatic agent against MRSA that appears to act via a novel mechanism. Here, twenty nine analogs of HMPC were synthesized, their anti-MRSA structure-activity relationships evaluated and selectivity versus human HKC-8 cells determined. Minimum inhibitory concentrations (MIC) ranged from 0.5 to 64?μg/mL and up to 16-fold selectivity was achieved. The 4-carbodithioate function was found to be essential for activity but non-specific reactivity was ruled out as a contributor to antibacterial action. The study supports further work aimed at elucidating the molecular targets of this interesting new class of anti-MRSA agents.  相似文献   
3.
4.
Nonrandomness in the intron and exon phase distributions in a sample of 305 human genes has been found and analyzed. It was shown that exon duplications had a significant effect on the exon phase nonrandomness. All of the nonrandomness is probably due to both the processes of exon duplication and shuffling. A quantitative estimation of exon duplications in the human genome and their influence on the intron and exon phase distributions has been analyzed. According to our estimation, the proportion of duplicated exons in the human genome constitutes at least 6% of the total. Generalizing the particular case of exon duplication to the more common event of exon shuffling, we modeled and analyzed the influence of exon shuffling on intron phase distribution. Received: 28 March 1997 / Accepted: 9 July 1997  相似文献   
5.
Despite recent progress in cell-analysis technology, rapid classification of cells remains a very difficult task. Among the techniques available, flow cytometry (FCM) is considered especially powerful, because it is able to perform multiparametric analyses of single biological particles at a high flow rate-up to several thousand particles per second. Moreover, FCM is nondestructive, and flow cytometric analysis can be performed on live cells. The current limit for simultaneously detectable fluorescence signals in FCM is around 8-15 depending upon the instrument. Obtaining multiparametric measurements is a very complex task, and the necessity for fluorescence spectral overlap compensation creates a number of additional difficulties to solve. Further, to obtain well-separated single spectral bands a very complex set of optical filters is required. This study describes the key components and principles involved in building a next-generation flow cytometer based on a 32-channel PMT array detector, a phase-volume holographic grating, and a fast electronic board. The system is capable of full-spectral data collection and spectral analysis at the single-cell level. As demonstrated using fluorescent microspheres and lymphocytes labeled with a cocktail of antibodies (CD45/FITC, CD4/PE, CD8/ECD, and CD3/Cy5), the presented technology is able to simultaneously collect 32 narrow bands of fluorescence from single particles flowing across the laser beam in <5 μs. These 32 discrete values provide a proxy of the full fluorescence emission spectrum for each single particle (cell). Advanced statistical analysis has then been performed to separate the various clusters of lymphocytes. The average spectrum computed for each cluster has been used to characterize the corresponding combination of antibodies, and thus identify the various lymphocytes subsets. The powerful data-collection capabilities of this flow cytometer open up significant opportunities for advanced analytical approaches, including spectral unmixing and unsupervised or supervised classification.  相似文献   
6.
7.
8.
Thermal, mechanical, turbidity, and microscope evidence is provided which strongly suggests molecular interpenetrating network (IPN) formation by mixtures of the seaweed polysaccharides agarose and kappa-carrageenan. Over a range of ionic strength, and potassium content, there is no evidence for synergistic coupling of the networks, and simple phase separation (demixing) can definitely be ruled out. At low ionic strength, where the agarose gels first, differential scanning calorimetry evidence shows some influence of the carrageenan on the agarose ordering enthalpy, particularly at higher polymer concentrations. As the potassium level is increased, however, and the order of gelling is reversed, this effect disappears. Cure behavior for the systems at high ionic strength can be described as a simple summation of the pure component contributions. At low ionic strength, on the other hand, the modulus behavior is more complex, suggesting either a modification, in the mixture, of the kappa-carrageenan gelling parameters or a more complex modulus additivity rule.  相似文献   
9.
Verheust C  Helinski DR 《Plasmid》2007,58(2):195-204
Analysis by fluorescence microscopy has established that plasmid RK2 in Escherichia coli and other gram-negative bacteria is present as discrete clusters that are located inside the nucleoid at the mid- or quarter-cell positions. A mini-RK2 replicon containing an array of tetO repeats was visualized in E. coli cells that express a TetR-EYFP fusion protein. Unlike intact RK2, the RK2 mini-replicon (pCV1) was localized as a cluster at the cell poles outside of the nucleoid. Insertion of the O(B1)incC korB partitioning (par) region of RK2 into pCV1 resulted in a shift of the mini-replicon to within the nucleoid region at the mid- and quarter-cell positions. Despite the repositioning of the mini-RK2 replicon to the cellular positions where intact RK2 is normally located, the insertion of the intact O(B1) incC korB region did not significantly stabilize the mini-RK2 plasmid during cell growth. Deletions within the O(B1)incC or the korB region resulted in a failure of this par region to move pCV1 out of its polar position. The insertion of the par system of plasmid F into pCV1 resulted in a similar shift in the location of pCV1 to the nucleoid region. Unlike O(B1)incC korB, the insertion of the RK2 parABC resolvase system into pCV1 did not affect the polar positioning of pCV1. This effect of O(B1)incC korB on the location of pCV1 provides additional evidence for a partitioning role of this region of plasmid RK2. However, the failure of this region to significantly increase the stability of the mini-RK2 plasmid indicates that the localization of the plasmid to the mid- and quarter cell positions in E. coli is not in itself sufficient for the stable maintenance of plasmid RK2.  相似文献   
10.
By dynamic light scattering in combination with fluorescence spectroscopy and TEM it was shown that aggregation in aqueous solutions is inherent not only to chitosan, but also to two other water-soluble derivatives of chitin: O-carboxymethylchitin and di-N,N-carboxymethylchitosan. Aggregation is observed even for the samples without N-acetyl-d-glucosamine units, which remain upon incomplete chemical modification of chitin, indicating that specific interactions between residual chitin repeat units cannot be the main reason for the aggregation. At the same time, 7 M urea weakens the aggregation, thus testifying that hydrogen bonding and/or hydrophobic interactions are partially responsible for this phenomenon. The incomplete disruption of aggregates in 7 M urea may arise from crystallization of junction zones between different macromolecules, which makes some hydrogen bonds inaccessible for urea or too stable for breaking by this agent.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号