首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   44篇
  免费   1篇
  2024年   1篇
  2023年   1篇
  2021年   2篇
  2020年   2篇
  2019年   1篇
  2016年   1篇
  2014年   1篇
  2013年   12篇
  2011年   2篇
  2009年   1篇
  2008年   1篇
  2007年   2篇
  2006年   1篇
  2005年   3篇
  2002年   2篇
  2001年   2篇
  1999年   1篇
  1997年   1篇
  1996年   1篇
  1986年   1篇
  1985年   3篇
  1983年   1篇
  1981年   1篇
  1980年   1篇
排序方式: 共有45条查询结果,搜索用时 93 毫秒
1.
Environmental DNA (eDNA) analysis is a powerful tool for remote detection of target organisms. However, obtaining quantitative and longitudinal information from eDNA data is challenging, requiring a deep understanding of eDNA ecology. Notably, if the various size components of eDNA decay at different rates, and we can separate them within a sample, their changing proportions could be used to obtain longitudinal dynamics information on targets. To test this possibility, we conducted an aquatic mesocosm experiment in which we separated fish-derived eDNA components using sequential filtration to evaluate the decay rate and changing proportion of various eDNA particle sizes over time. We then fit four alternative mathematical decay models to the data, building towards a predictive framework to interpret eDNA data from various particle sizes. We found that medium-sized particles (1–10 μm) decayed more slowly than other size classes (i.e., <1 and > 10 μm), and thus made up an increasing proportion of eDNA particles over time. We also observed distinct eDNA particle size distribution (PSD) between our Common carp and Rainbow trout samples, suggesting that target-specific assays are required to determine starting eDNA PSDs. Additionally, we found evidence that different sizes of eDNA particles do not decay independently, with particle size conversion replenishing smaller particles over time. Nonetheless, a parsimonious mathematical model where particle sizes decay independently best explained the data. Given these results, we suggest a framework to discern target distance and abundance with eDNA data by applying sequential filtration, which theoretically has both metabarcoding and single-target applications.  相似文献   
2.
Tyrosine hydroxylase (TH) is the rate-limiting enzyme in catecholamine synthesis. Its activity is known to be controlled acutely (minutes) by phosphorylation and chronically (days) by protein synthesis. Using bovine adrenal chromaffin cells we found that nicotine, acting via nicotinic receptors, sustained the phosphorylation of TH at Ser40 for up to 48 h. Nicotine also induced sustained activation of TH, which for the first 24 h was completely independent of TH protein synthesis, and the phosphorylation of TH at Ser31. Imipramine did not inhibit the acute phosphorylation of TH at Ser40 or TH activation induced by nicotine, but did inhibit the sustained responses to nicotine seen at 24 h. The protein kinase(s) responsible for TH phosphorylation at Ser40 switched from being protein kinase C (PKC) independent in the acute phase to PKC dependent in the sustained phase. Sustained phosphorylation and activation of TH were also observed with histamine and angiotensin II. Sustained phosphorylation of TH at Ser40 provides a novel mechanism for increasing TH activity and this leads to increased catecholamine synthesis. Sustained phosphorylation of TH may be a selective target for drugs or pathology in neurons that contain TH and synthesize dopamine, noradrenaline or adrenaline.  相似文献   
3.
AIMS: To evaluate the survival of Campylobacter jejuni relative to that of Escherichia coli in groundwater microcosms varying in nutrient composition. METHODS AND RESULTS: Studies were conducted in groundwater and deionized water incubated for up to 470 days at 4 degrees C. Samples were taken for culturable and total cell counts, nutrient and molecular analysis. Die-off in groundwater microcosms was between 2.5 and 13 times faster for C. jejuni than for E. coli. Campylobacter jejuni had the lowest decay rate and longest culturability in microcosms with higher dissolved organic carbon (4 mg l(-1)). Escherichia coli survival was the greatest when the total dissolved nitrogen (12.0 mg l(-1)) was high. The transition of C. jejuni to the coccoid stage was independent of culturability. CONCLUSION: The differences in the duration of survival and response to water nutrient composition between the two organisms suggest that E. coli may be present in the waters much longer and respond to water composition much differently than C. jejuni. SIGNIFICANCE AND IMPACT OF THE STUDY: The data from these studies would aid in the evaluation of the utility of E. coli as an indicator of C. jejuni. This study also provided new information about the effect of nutrient composition on C. jejuni viability.  相似文献   
4.
Binding of Cu2+ and Ni2+ to glucosamine, N-acetyl- glucosamine and other derivatives of glucose was investigated in acidic, neutral and alkaline aqueous media using H+ and Cu2+ potentiometry and ligand- field and ESR spectroscopy. In neutral medium, site binding with copper(II) and nickel(II) occurs when the monosaccharide possesses a potentially coordinating amine or charged group not attached to C-1. At high pH, a coordination entity is only formed if the C-1 hydroxyl group can be deprotonated and other stabilizing groups are present. The role of groups attached to C-1 reflects the different behaviour of monosaccharides compared with polysaccharides.  相似文献   
5.
Ann Bolster 《CMAJ》1996,154(7):999
  相似文献   
6.
The level of hematocrit (Hct) is known to affect mean arterial pressure (MAP) by influencing blood viscosity. In the healthy population, an increase in Hct (and corresponding increase in viscosity) tends to raise MAP. However, data from a clinical study of type 2 diabetic patients indicate that this relationship is not universal. Instead, individuals in the lower levels of Hct range display a decrease in MAP for a given rise in Hct. After reaching a minimum, this trend is reversed, so that further increases in Hct lead to increases in MAP. We hypothesize that this anomalous behavior occurs due to changes in the circulatory autoregulation mechanism. To substantiate this hypothesis, we develop a physically based mathematical model that incorporates autoregulation mechanisms. Our model replicates the anomalous U-shaped relationship between MAP and Hct found in diabetic patients in the same range of Hct variability.  相似文献   
7.
A series of microcosm experiments was performed using serial dilutions of a sewage microbial community to inoculate a set of batch cultures in sterile sewage. After inoculation, the dilution-defined communities were allowed to regrow for several days and a number of community attributes were measured in the regrown assemblages. Based upon a set of numerical simulations, community structure was expected to differ along the dilution gradient; the greatest differences in structure were anticipated between the undiluted–low-dilution communities and the communities regrown from the very dilute (more than 10−4) inocula. Furthermore, some differences were expected among the lower-dilution treatments (e.g., between undiluted and 10−1) depending upon the evenness of the original community. In general, each of the procedures used to examine the experimental community structures separated the communities into at least two, often three, distinct groups. The groupings were consistent with the simulated dilution of a mixture of organisms with a very uneven distribution. Significant differences in community structure were detected with genetic (amplified fragment length polymorphism and terminal restriction fragment length polymorphism), physiological (community level physiological profiling), and culture-based (colony morphology on R2A agar) measurements. Along with differences in community structure, differences in community size (acridine orange direct counting), composition (ratio of sewage medium counts to R2A counts, monitoring of each colony morphology across the treatments), and metabolic redundancy (i.e., generalist versus specialist) were also observed, suggesting that the differences in structure and diversity of communities maintained in the same environment can be manifested as differences in community organization and function.  相似文献   
8.
The contribution of mammalian target of rapamycin (mTOR) signaling to the resistance exercise-induced stimulation of skeletal muscle protein synthesis was assessed by administering rapamycin to Sprague-Dawley rats 2 h prior to a bout of resistance exercise. Animals were sacrificed 16 h postexercise, and gastrocnemius protein synthesis, mTOR signaling, and biomarkers of translation initiation were assessed. Exercise stimulated the rate of protein synthesis; however, this effect was prevented by pretreatment with rapamycin. The stimulation of protein synthesis was mediated by an increase in translation initiation, since exercise caused an increase in polysome aggregation that was abrogated by rapamycin administration. Taken together, the data suggest that the effect of rapamycin was not mediated by reduced phosphorylation of eukaryotic initiation factor 4E (eIF4E) binding protein 1 (BP1), because exercise did not cause a significant change in 4E-BP1(Thr-70) phosphorylation, 4E-BP1-eIF4E association, or eIF4F complex assembly concomitant with increased protein synthetic rates. Alternatively, there was a rapamycin-sensitive decrease in relative eIF2Bepsilon(Ser-535) phosphorylation that was explained by a significant increase in the expression of eIF2Bepsilon protein. The proportion of eIF2Bepsilon mRNA in polysomes was increased following exercise, an effect that was prevented by rapamycin treatment, suggesting that the increase in eIF2Bepsilon protein expression was mediated by an mTOR-dependent increase in translation of the mRNA encoding the protein. The increase in eIF2Bepsilon mRNA translation and protein abundance occurred independent of similar changes in other eIF2B subunits. These data suggest a novel link between mTOR signaling and eIF2Bepsilon mRNA translation that could contribute to the stimulation of protein synthesis following acute resistance exercise.  相似文献   
9.
Biochars vary widely in pH, surface area, nutrient concentration, porosity, and metal binding capacity due to the assortment of feedstock materials and thermal conversion conditions under which it is formed. The wide variety of chemical and physical characteristics have resulted in biochar being used as an amendment to rebuild soil health, improve crop yields, increase soil water storage, and restore soils/spoils impacted by mining. Meta-analysis of the biochar literature has shown mixed results when using biochar as a soil amendment to improve crop productivity. For example, in one meta-analysis, biochar increased crop yield by approximately 10 %, while in another, approximately 50 % of the studies reported minimal to no crop yield increases. In spite of the mixed crop yield reports, biochars have properties that can improve soil health characteristics, by increasing carbon (C) sequestration and nutrient and water retention. Biochars also have the ability to bind enteric microbes and enhance metal binding in soils impacted by mining. In this review, we present examples of both effective and ineffective uses of biochar to improve soil health for agricultural functions and reclamation of degraded mine spoils. Biochars are expensive to manufacture and cannot be purged from soil after application, so for efficient use, they should be targeted for specific uses in agricultural and environmental sectors. Thus, we introduce the designer biochar concept as an alternate paradigm stating that biochars should be designed with properties that are tailored to specific soil deficiencies or problems. We then demonstrate how careful selection of biochars can increase their effectiveness as a soil amendment.  相似文献   
10.
Aims:  To investigate the processes controlling the transport of Mycobacterium avium subsp. paratuberculosis ( Map ) through aquifer materials.
Methods and Results:  We measured two important surface characteristics known to affect bacterial attachment to sediment surfaces: surface charge and hydrophobicity. We then measured the transport of Map through laboratory columns packed with aquifer sand with varying ionic strength solutions and sediment surface charge. We found that Map has a strong negative charge and is highly hydrophobic and that the transport of Map through positively charged Fe-coated sands was reduced compared with transport through negatively charged clean quartz sand, although Map transport for all treatments was low compared with the transport behaviour reported in the literature for other bacteria.
Conclusions:  Our results suggest that the potential for groundwater contamination by Map is low; however, the organism may remain bound to the soil near the surface where it can be ingested by grazing animals or be released during run off events.
Significance and Impact of the Study:  This is the first study looking at the surface characteristics and transport behaviour of Map through aquifer materials and therefore provides important information for understanding the movement of Map in the environment.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号