首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   358篇
  免费   29篇
  387篇
  2023年   2篇
  2022年   5篇
  2021年   5篇
  2020年   3篇
  2019年   7篇
  2018年   14篇
  2017年   10篇
  2016年   9篇
  2015年   12篇
  2014年   22篇
  2013年   23篇
  2012年   29篇
  2011年   22篇
  2010年   15篇
  2009年   15篇
  2008年   20篇
  2007年   17篇
  2006年   22篇
  2005年   17篇
  2004年   18篇
  2003年   27篇
  2002年   22篇
  2001年   3篇
  2000年   4篇
  1999年   3篇
  1998年   2篇
  1997年   2篇
  1996年   3篇
  1995年   5篇
  1994年   1篇
  1993年   2篇
  1991年   1篇
  1990年   3篇
  1989年   1篇
  1988年   1篇
  1986年   2篇
  1983年   3篇
  1982年   1篇
  1980年   3篇
  1979年   1篇
  1978年   1篇
  1977年   2篇
  1976年   1篇
  1975年   3篇
  1974年   1篇
  1973年   2篇
排序方式: 共有387条查询结果,搜索用时 31 毫秒
1.
Summary The expression and distribution of S-100 protein and type IV collagen was studied immunohistochemically in sympathetic neuroblasts from the paravertebral region to the adrenal glands in human embryos and fetuses ranging from 7 to 12 weeks gestational age. Prom 7 weeks gestational age, S-100 protein was detected in round or oval cells mingling with sympathetic neuroblasts, and in spindle-shaped cells forming a continuous layer around them. The latter S-100 protein-positive cells were found in contact with the Schwann cells of nerve fibres entering the groups of sympathetic neuroblasts. Staining for type IV collagen showed that all groups of sympathetic neuroblasts were surrounded by a continuous basement membrane. By examining serial sections stained for type IV collagen and S-100 protein, a continuous basement membrane was found along the distribution pattern of the peripheral S-100 protein-positive spindle cells. The morphology of these cells, and their relationships with Schwann cells and with the basement membrane of the sympathetic neuroblasts, indicated that they were Schwann-like cells probably capable of synthesizing a continuous basement membrane separating the neuroblasts from the adjacent tissues. In contrast, the round or oval S-100 protein-positive cells, in contact with the sympathetic neuroblasts and not associated with nerve fibres, were considered as sustentacular or sustentacular precursor cells. At week 7 gestational age, the peri-adrenal sympathetic neuroblasts and their sustentacular and Schwann-like cells started to invade the adrenal glands and mingled with the adrenal cortical cells. These findings suggest the extra-adrenal origin of the sustentacular cells in embryonic and fetal adrenal glands.  相似文献   
2.
We investigated the potential plant growth-promoting traits of 377 culturable endophytic bacteria, isolated from Vitis vinifera cv. Glera, as good biofertilizer candidates in vineyard management. Endophyte ability in promoting plant growth was assessed in vitro by testing ammonia production, phosphate solubilization, indole-3-acetic acid (IAA) and IAA-like molecule biosynthesis, siderophore and lytic enzyme secretion. Many of the isolates were able to mobilize phosphate (33%), release ammonium (39%), secrete siderophores (38%) and a limited part of them synthetized IAA and IAA-like molecules (5%). Effects of each of the 377 grapevine beneficial bacteria on Arabidopsis thaliana root development were also analyzed to discern plant growth-promoting abilities (PGP) of the different strains, that often exhibit more than one PGP trait. A supervised model-based clustering analysis highlighted six different classes of PGP effects on root architecture. A. thaliana DR5::GUS plantlets, inoculated with IAA-producing endophytes, resulted in altered root growth and enhanced auxin response. Overall, the results indicate that the Glera PGP endospheric culturable microbiome could contribute, by structural root changes, to obtain water and nutrients increasing plant adaptation and survival. From the complete cultivable collection, twelve promising endophytes mainly belonging to the Bacillus but also to Micrococcus and Pantoea genera, were selected for further investigations in the grapevine host plants towards future application in sustainable management of vineyards.  相似文献   
3.
Although prostate carcinoma is an aggressive cancer preferentially metastasizing to the bones, many prostate tumors remain localized and confined to the prostate indefinitely. Prediction of the behavior of anatomically localized and moderately differentiated prostate tumors remains difficult because of lack of prognostic markers. Cell motility is an important step in the progression of epithelial tumor toward invasive metastatic carcinomas and changes in the expression and function of adhesion molecules contribute to the acquisition of a more malignant phenotype. Proline-rich tyrosine kinase 2 (Pyk2) is implicated in regulating the organization of actin cytoskeleton, a process critical for cell migration, mitosis, and tumor metastasis. In this report, we investigated whether Pyk2 played a role in the acquisition of an aggressive phenotype in prostate cell. Data reported here demonstrate that loss of Pyk2 kinase function results in induction of cell motility and migration in EPN cells, a line of non-transformed epithelial cells derived from human normal prostate tissue. Changes in motility and migration of prostate cells were associated with changes in the expression of several proteins involved in cell adhesion and reorganization of actin cytoskeleton. Ablation of Pyk2 kinase activity caused a dramatic decrease of the expression of E-cadherin and IRS1 and an increase of the expression of alpha5-integrin. In addition, a massive reorganization of actin cytoskeleton was observed. Our data indicate that Pyk2 plays a central role in the mechanism that regulate cell-cell and cell-substrate interaction and lack of its kinase activity induces prostate cells to acquire a malignant, migrating phenotype.  相似文献   
4.
Nuclei were isolated from leaf tissue of differentCapsicum species and the relative fluorescence intensity was measured by flow cytometry after propidium iodide staining.Pisum sativum nuclei with known nuclear genome size (9.07 pg) were used as internal standard to determine nuclear DNA content of the samples in absolute units. The 2C DNA contents ranged between 7.65 pg inC. annuum and 9.72 pg inC. pubescens, and the general mean of the genus was 8.42 pg. These values correspond, respectively, to 1C genome size of 3.691 (C. annuum), 4.690 (C. pubescens) and 4.063 (general mean) Mbp. In general, white-flowered species proved to have less DNA, with the exception ofC. praetermissum, which displayed a 2C DNA content of 9.23 pg. It was possible to divide the studied species into three main groups according to their DNA content, and demonstrate differences in DNA content within two of the three species complexes established on the basis of morphological traits.  相似文献   
5.
6.
Two point mutations of ABCA1 gene were found in a patient with Tangier disease (TD): i) G>C in intron 2 (IVS2 +5G>C) and ii) c.844 C>T in exon 9 (R282X). The IVS2 +5G>C mutation was also found in the brother of another deceased TD patient, but not in 78 controls and 33 subjects with low HDL. The IVS2 +5G>C mutation disrupts ABCA1 pre-mRNA splicing in fibroblasts, leading to three abnormal mRNAs: devoid of exon 2 (Ex2-/mRNA), exon 4 (Ex4-/mRNA), or both these exons (Ex2-/Ex4-/mRNA), each containing a translation initiation site. These mRNAs are expected either not to be translated or generate short peptides. To investigate the in vitro effect of IVS2 +5G>C mutation, we constructed two ABCA1 minigenes encompassing Ex1-Ex3 region, one with wild-type (WTgene) and the other with mutant (MTgene) intron 2. These minigenes were transfected into COS1 and NIH3T3, two cell lines with a different ABCA1 gene expression. In COS1 cells, WTgene pre-mRNA was spliced correctly, while the splicing of MTgene pre-mRNA resulted in Ex2-/mRNA. In NIH3T3, no splicing of MTgene pre-mRNA was observed, whereas WTgene pre-mRNA was spliced correctly. These results stress the complexity of ABCA1 pre-mRNA splicing in the presence of splice site mutations.  相似文献   
7.
8.
We analyzed Niemann-Pick type C disease 1 (NPC1) gene in 12 patients with Niemann-Pick type C disease by sequencing both cDNA obtained from fibroblasts and genomic DNA. All the patients were compound heterozygotes. We found 15 mutations, eight of which previously unreported. The comparison of cDNA and genomic DNA revealed discrepancies in some subjects. In two unrelated patients carrying the same mutations (P474L and nt 2972del2) only one mutant allele (P474L), was expressed in fibroblasts. The mRNA corresponding to the other allele was not detected even in cells incubated with cycloheximide. The promoter variants (-1026T/G and -1186T/C or -238 C/G), found to be in linkage with 2972del2 allele do not explain the lack of expression of this allele, as they were also found in control subjects. In another patient, (N1156S/Q922X) the N1156S allele was expressed in fibroblasts while the expression of the other allele was hardly detectable. In a fourth patient cDNA analysis revealed a point mutation in exon 20 (P1007A) and a 56 nt deletion in exon 22 leading to a frameshift and a premature stop codon. The first mutation was confirmed in genomic DNA; the second turned out to be a T-->G transversion in exon 22, predicted to cause a missense mutation (V1141G). In fact, this transversion generates a donor splice site in exon 22, which causes an abnormal pre-mRNA splicing leading to a partial deletion of this exon. In some NPC patients, therefore, the comparison between cDNA and genomic DNA may reveal an unexpected expression of some mutant alleles of NPC1 gene.  相似文献   
9.
In many human cancers, p27 downregulation correlates with a worse prognosis, suggesting that p27 levels could represent an important determinant in cell transformation and cancer development. Using a mouse model system based on v-src-induced transformation, we show here that p27 absence is always linked to a more aggressive phenotype. When cultured in three-dimensional contexts, v-src-transformed p27-null fibroblasts undergo a morphological switch from an elongated to a rounded cell shape, accompanied by amoeboid-like morphology and motility. Importantly, the acquisition of the amoeboid motility is associated with a greater ability to move and colonize distant sites in vivo. The reintroduction of different p27 mutants in v-src-transformed p27-null cells demonstrates that the control of cell proliferation and motility represents two distinct functions of p27, both necessary for it to fully act as a tumor suppressor. Thus, we highlight here a new p27 function in driving cell plasticity that is associated with its C-terminal portion and does not depend on the control of cyclin-dependent kinase activity.Dissemination of tumor cells is strictly linked to their ability to attach to and move within the extracellular matrix (ECM) in a three-dimensional (3D) environment. The use of 3D experimental model systems revealed that a higher complexity in cell migration and adaptation responses exists in the 3D model than in the classical 2D model (10, 16, 41, 49). A striking example is given by the fact that only in 3D could individually migrating cells use different mechanisms such as mesenchymal and amoeboid motility (16, 17). The relative slow mesenchymal migration is characterized by a fibroblast-like spindle shape and is dependent on integrin-mediated adhesion and on protease function (16). The amoeboid motility can in some cases represent a less adhesive, integrin-independent type of movement. Cells use a propulsive mechanism and are highly deformable, and rather than degrade the matrix, they are able to squeeze through it (16). As a result, the cells that use the amoeboid motility can potentially move faster than cells that use a mesenchymal strategy. Mesenchymal and amoeboid movements are also characterized by a different involvement of small GTPases of the Rho family. A high RhoA activity is associated mainly with the amoeboid motility, while the mesenchymal migration needs a high Rac activity at the leading edge to promote the extension of cellular protrusions (41, 48). Under certain circumstances, cancer cells can undergo conversion from a mesenchymal toward an amoeboid motility, an event referred as mesenchymal-amoeboid transition (MAT) (50). MAT represents a putative escape mechanism in tumor cell dissemination that could be induced by inhibition of pericellular proteolysis (50) or by increased membrane-associated RhoA activity (18, 40).Key mediators of cell motility through ECM substrates are the members of the Src family kinases. The prototype of Src family kinases, c-Src (14), is activated following cell-ECM adhesion and contributes to regulate the focal adhesion turnover and the cytoskeletal modifications necessary for normal cell adhesion and motility (52). The c-Src gene is the proto-oncogene of the transforming gene v-src of Rous sarcoma virus, and its elevated protein level and activity have been found in many human tumors (20, 28, 27, 34). Despite the accumulation of information and new molecular understanding of how Src is controlled, there is still an incomplete picture about its role in the generation of the malignant phenotype. v-Src shows higher levels of the kinase activity and transforming ability than c-Src (14, 15, 52). It induces normal cells to acquire a variety of transformed features, including alteration of morphology and increase of invasion ability due to its role in focal adhesion remodeling (7, 9, 13).Many data suggest that there is a close relationship between cell-ECM interaction and the proliferation and movements in both normal and tumor cells (5, 38, 43). Accordingly, Src activation may influence not only cell motility but also cell cycle progression by targeting the cell cycle inhibitor p27kip1 to proteasomal degradation (22, 39). Recent evidences indicated that p27kip1 (hereafter called p27) can also regulate cell migration, even though its role still remains controversial since it has been reported to either block or stimulate cell movements (1, 4, 11, 19, 21, 23, 29, 45).Based on these notions, we tested the possible contribution of p27 to the growth and motility phenotypes induced by v-src transformation, with special regard to those cellular invasive features that can be observed in 3D environments. By studying in vitro and in vivo the behavior of wild-type (WT) and p27-null fibroblasts transformed with v-src, we highlight a new role for p27 in the regulation of cellular plasticity that can ultimately drive tumor cell shape, motility, and invasion.  相似文献   
10.
ARH is a newly discovered adaptor protein required for the efficient activity of low density lipoprotein receptor (LDLR) in selected tissues. Individuals lacking ARH have severe hypercholesterolemia due to an impaired hepatic clearance of LDL. It has been demonstrated that ARH is required for the efficient internalization of the LDL-LDLR complex and to stabilize the association of the receptor with LDL in Epstein-Barr virus-immortalized B lymphocytes. However, little information is available on the role of ARH in liver cells. Here we provide evidence that ARH is codistributed with LDLR on the basolateral area in confluent HepG2-polarized cells. This distribution is not modified by the overexpression of LDLR. Conversely, the activation of the LDLR-mediated endocytosis, but not the binding of LDL to LDLR, promotes a significant colocalization of ARH with LDL-LDLR complex that peaked at 2 min at 37 degrees C. To further assess the role of ARH in LDL-LDLR complex internalization, we depleted ARH protein using the RNA interference technique. Twenty-four hours after transfection with ARH-specific RNA interference, ARH protein was depleted in HepG2 cells by more than 70%. Quantitative immunofluorescence analysis revealed that the depletion of ARH caused about 80% reduction in LDL internalization. Moreover, our findings indicate that ARH is associated with other proteins of the endocytic machinery. We suggest that ARH is an endocytic sorting adaptor that actively participates in the internalization of the LDL-LDLR complex, possibly enhancing the efficiency of its packaging into the endocytic vesicles.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号