首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   53篇
  免费   4篇
  57篇
  2018年   3篇
  2017年   1篇
  2012年   1篇
  2011年   1篇
  2010年   2篇
  2009年   3篇
  2008年   7篇
  2007年   7篇
  2006年   6篇
  2005年   4篇
  2004年   3篇
  2003年   3篇
  2002年   3篇
  2001年   4篇
  2000年   5篇
  1998年   1篇
  1997年   2篇
  1996年   1篇
排序方式: 共有57条查询结果,搜索用时 10 毫秒
1.
Differences in relative fitness of male and female offspring across ecological and social environments should favour the evolution of sex-determining mechanisms that enable adjustment of brood sex ratio to the context of breeding. Despite the expectation that genetic sex determination should not produce consistent bias in primary sex ratios, extensive and adaptive modifications of offspring sex ratio in relation to social and physiological conditions during reproduction are often documented. Such discordance emphasizes the need for empirical investigation of the proximate mechanisms for modifying primary sex ratios, and suggests epigenetic effects on sex-determining mechanisms as the most likely candidates. Birds, in particular, are thought to have an unusually direct opportunity to modify offspring sex ratio because avian females are heterogametic and because the sex-determining division in avian meiosis occurs prior to ovulation and fertilization. However, despite evidence of strong epigenetic effects on sex determination in pre-ovulatory avian oocytes, the mechanisms behind such effects remain elusive. Our review of molecular and cytological mechanisms of avian meiosis uncovers a multitude of potential targets for selection on biased segregation of sex chromosomes, which may reflect the diversity of mechanisms and levels on which such selection operates in birds. Our findings indicate that pronounced differences between sex chromosomes in size, shape, size of protein bodies, alignment at the meiotic plate, microtubule attachment and epigenetic markings should commonly produce biased segregation of sex chromosomes as the default state, with secondary evolution of compensatory mechanisms necessary to maintain unbiased meiosis. We suggest that it is the epigenetic effects that modify such compensatory mechanisms that enable context-dependent and precise adjustment of primary sex ratio in birds. Furthermore, we highlight the features of avian meiosis that can be influenced by maternal hormones in response to environmental stimuli and may account for the precise and adaptive patterns of offspring sex ratio adjustment observed in some species.  相似文献   
2.
The phenotype of a mother and the environment that she provides might differentially affect the phenotypes of her sons and daughters, leading to change in sexual size dimorphism. Whereas these maternal effects should evolve to accommodate the adaptations of both the maternal and offspring generations, the mechanisms by which this is accomplished are rarely known. In birds, females adjust the onset of incubation (coincident with the first egg or after all eggs are laid) in response to the environment during breeding, and thus, indirectly, determine the duration of offspring growth. In the two house finch (Carpodacus mexicanus) populations that breed at the extremes of the species' distribution (Montana and Alabama), females experience highly distinct climatic conditions during nesting. We show that in close association with these conditions, females adjusted jointly the onset of incubation and the sequence in which they produced male and female eggs and consequently modified the growth of sons and daughters. The onset of incubation in newly breeding females closely tracked ambient temperature in a pattern consistent with the maintenance of egg viability. Because of the very different climates in Montana and Alabama, females in these populations showed the opposite patterns of seasonal change in incubation onset and the opposite sex bias in egg-laying order. In females with breeding experience, incubation onset and sex bias in laying order were closely linked regardless of the climatic variation. In nests in which incubation began with the onset of egg laying, the first-laid eggs were mostly females in Montana, but mostly males in Alabama. Because in both populations, male, but not female, embryos grew faster when exposed to longer incubation, the sex-bias produced highly divergent sizes of male and female juveniles between the populations. Overall, the compensatory interaction between the onset of incubation and the sex-biased laying order achieved a compromise between maternal and offspring adaptations and contributed to rapid morphological divergence in sexual dimorphism between populations of the house finch breeding at the climatic extremes of the species range.  相似文献   
3.
Differences among taxa in sexual size dimorphism of adults can be produced by changes in distinct developmental processes and thus may reflect different evolutionary histories. Here we examine whether divergence in sexual dimorphism of adults between recently established Montana and Alabama populations of the house finch (Carpodacus mexicanus) can be attributed to population differences in growth of males and females. In both populations, males and females were similar at hatching, but as a result of sex-specific growth attained sexual size dimorphism by the time of independence. Timing and extent of growth varied between the sexes: Females maintained maximum rates of growth for a longer time than males, whereas males had higher initial growth rates and achieved maximum growth earlier and at smaller sizes than females. Ontogeny of sexual dimorphism differed between populations, but in each population, sexual dimorphism in growth parameters and sexual dimorphism at the time of nest leaving were similar to sexual dimorphism of adults. Variation in growth of females contributed more to population divergence than did growth of males. In each population, we found close correspondence between patterns of sexual dimorphism in growth and population divergence in morphology of adults: Traits that were the most sexually dimorphic in growth in each population contributed the most to population divergence in both sexes. We suggest that sex-specific expression of phenotypic and genetic variation throughout the ontogeny of house finches can result in different responses to selection between males and females of the same age, and thus produce fast population divergence in the sexual size dimorphism.  相似文献   
4.
A tremendous diversity of avian color displays has stimulatednumerous studies of natural and sexual selection. Yet, the developmentalmechanisms that produce such diversification, and thus the proximatetargets of selection pressures, are rarely addressed and poorlyunderstood. In particular, because feathers are colored duringgrowth, the dynamics of feather growth play a deterministicrole in the variation in ornamentation. No study to date, however,has addressed the contribution of feather growth to the expressionof carotenoid-based ornamentation. Here, we examine the developmentalbasis of variation in ornamental feather shapes in male housefinches (Carpodacus mexicanus)—a species in which carotenoiddisplays are under strong natural and sexual selection. First,we use geometric morphometrics to partition the observed shapevariation in fully grown feathers among populations, ages, degreesof elaboration, ornamental body parts, and individuals. Second,we use a biologically informed mathematical model of feathergrowth to predict variation in shape of ornamental feathersdue to simulated growth rate, angle of helical growth of featherbarbs, initial number of barb ridges, rate of addition of newbarbs, barb diameter, and ramus-expansion angle. We find closeconcordance between among-individual variation in feather shapeand hue of entire ornament, and show that this concordance canbe attributed to a shared mechanism—growth rate of featherbarbs. Predicted differences in feather shape due to rate ofaddition of barbs and helical angle of feather growth explainedobserved variation in ornamental area both among individualsand between populations, whereas differences in helical angleof growth and the number of barbs in the feather follicle explaineddifferences in feather shape between ornamental parts and amongmales of different ages. The findings of a close associationof feather growth dynamics and overall ornamentation identifythe proximate targets of selection for elaboration of sexualdisplays. Moreover, the close association of feather growthand pigmentation not only can reinforce condition-dependencein color displays, but can also enable phenotypic and geneticaccommodation of novel pigments into plumage displays providinga mechanism for the observed concordance of within-populationdevelopmental processes and between-population diversificationof color displays.  相似文献   
5.
Evolutionary diversifications are commonly attributed to thecontinued modifications of a conserved genetic toolkit of developmentalpathways, such that complexity and convergence in organismalforms are assumed to be due to similarity in genetic mechanismsor environmental conditions. This approach, however, confoundsthe causes of organismal development with the causes of organismaldifferences and, as such, has only limited utility for addressingthe cause of evolutionary change. Molecular mechanisms thatare closely involved in both developmental response to environmentalsignals and major evolutionary innovations and diversificationsare uniquely suited to bridge this gap by connecting explicitlythe causes of within-generation variation with the causes ofdivergence of taxa. Developmental pathways of bone formationand a common role for bone morphogenetic proteins (BMPs) inboth epigenetic bone remodeling and the evolution of major adaptivediversifications provide such opportunity. We show that variationin timing of ossification can result in similar phenotypic patternsthrough epigenetically induced changes in gene expression andpropose that both genetic accommodation of environmentally induceddevelopmental pathways and flexibility in development acrossenvironments evolve through heterochronic shifts in bone maturationrelative to exposure to unpredictable environments. We suggestthat such heterochronic shifts in ossification can not onlybuffer development under fluctuating environments while maintainingepigenetic sensitivity critical for normal skeletal formation,but also enable epigenetically induced gene expression to generatespecialized morphological adaptations. We review studies ofenvironmental sensitivity of BMP pathways and their regulationof formation, remodeling, and repair of cartilage and bone toexamine the hypothesis that BMP-mediated skeletal adaptationsare facilitated by evolved reactivity of BMPs to external signals.Surprisingly, no empirical study to date has identified themolecular mechanism behind developmental plasticity in skeletaltraits. We outline a conceptual framework for future studiesthat focus on mediation of phenotypic plasticity in skeletaldevelopment by the patterns of BMP expression.  相似文献   
6.
Abstract When costs and benefits of raising sons and daughters differ between environments, parents may be selected to modify their investment into male and female offspring. In two recently colonized environments, breeding female house finches (Carpodacus mexicanus) modified the sex and growth of their offspring in relation to the order in which eggs were laid in a clutch. Here we show that, in both populations, these maternal effects strongly biased frequency distribution of tarsus size of fully grown males and females and ultimately produced population divergence in this trait. Although in each population, male and female offspring show a wide range of growth patterns, maternal modifications of sex‐ratio in relation to egg‐laying order resulted in under‐representation of the morphologies that were selected against and over‐representation of morphologies that were favoured by the local selection on juveniles. The result of these maternal adjustments was fast phenotypic change in sexual size dimorphism within and between populations. Maternal manipulations of offspring morphologies may be especially important at the initial stages of population establishment in the novel environments and may have facilitated recent colonization of much of North America by the house finch.  相似文献   
7.
The house finch (Carpodacus mexicanus) has emerged recently as a model species in studies of sexual selection, reproductive physiology, population genetics, and epizootic disease ecology. Here we describe 17 highly polymorphic microsatellite loci for this species. In a sample of 36 individuals, we observed an average of 16 alleles per locus and heterozygosity ranged from 0.61 to 0.97. One locus showed significant deviation from Hardy-Weinberg proportions, but no significant gametic disequilibrium was observed among any of the loci. Amplification by polymerase chain reaction was optimized under similar parameters across loci, thereby facilitating multiplexing and rapid multilocus genotyping.  相似文献   
8.
Divergent selection on traits involved in both local adaptation and the production of mating signals can strongly facilitate population differentiation. Because of its links to foraging morphologies and cultural inheritance song of birds can contribute particularly strongly to maintenance of local adaptations. In two adjacent habitats--native Sonoran desert and urban areas--house finches (Carpodacus mexicanus) forage on seeds that are highly distinct in size and shell hardness and require different bite forces and bill morphologies. Here, we first document strong and habitat-specific natural selection on bill traits linked to bite force and find adaptive modifications of bite force and bill morphology and associated divergence in courtship song between the two habitats. Second, we investigate the developmental basis of this divergence and find that early ontogenetic tissue transformation in bill, but not skeletal traits, is accelerated in the urban population and that the mandibular primordia of the large-beaked urban finches express bone morphogenetic proteins (BMP) earlier and at higher level than those of the desert finches. Further, we show that despite being geographically adjacent, urban and desert populations are nevertheless genetically distinct corroborating findings of early developmental divergence between them. Taken together, these results suggest that divergent selection on function and development of traits involved in production of mating signals, in combination with localized learning of such signals, can be very effective at maintaining local adaptations, even at small spatial scales and in highly mobile animals.  相似文献   
9.
Maternal modification of offspring sex in birds has strong fitness consequences, however the mechanisms by which female birds can bias sex of their progeny in close concordance with the environment of breeding are not known. In recently established populations of house finches (Carpodacus mexicanus), breeding females lay a sex-biased sequence of eggs when ambient temperature causes early onset of incubation. We studied the mechanisms behind close association of incubation and sex-determination strategies in this species and discovered that pre-ovulation oocytes that produce males and females differed strongly in the temporal patterns of proliferation and growth. In turn, sex-specific exposure of oocytes to maternal secretion of prolactin and androgens produced distinct accumulation of maternal steroids in oocyte yolks in relation to oocyte proliferation order. These findings suggest that sex difference in oocyte growth and egg-laying sequence is an adaptive outcome of hormonal constraints imposed by the overlap of early incubation and oogenesis in this population, and that the close integration of maternal incubation, oocytes' sex-determination and growth might be under control of the same hormonal mechanism. We further document that population establishment and the evolution of these maternal strategies is facilitated by their strong effects on female and offspring fitness in a recently established part of the species range.  相似文献   
10.
Historical associations of genes and proteins are thought to delineate pathways available to subsequent evolution; however, the effects of past functional involvements on contemporary evolution are rarely quantified. Here, we examined the extent to which the structure of a carotenoid enzymatic network persists in avian evolution. Specifically, we tested whether the evolution of carotenoid networks was most concordant with phylogenetically structured expansion from core reactions of common ancestors or with subsampling of biochemical pathway modules from an ancestral network. We compared structural and historical associations in 467 carotenoid networks of extant and ancestral species and uncovered the overwhelming effect of pre‐existing metabolic network structure on carotenoid diversification over the last 50 million years of avian evolution. Over evolutionary time, birds repeatedly subsampled and recombined conserved biochemical modules, which likely maintained the overall structure of the carotenoid metabolic network during avian evolution. These findings explain the recurrent convergence of evolutionary distant species in carotenoid metabolism and weak phylogenetic signal in avian carotenoid evolution. Remarkable retention of an ancient metabolic structure throughout extensive and prolonged ecological diversification in avian carotenoid metabolism illustrates a fundamental requirement of organismal evolution – historical continuity of a deterministic network that links past and present functional associations of its components.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号