首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10954篇
  免费   819篇
  国内免费   727篇
  12500篇
  2024年   86篇
  2023年   172篇
  2022年   389篇
  2021年   662篇
  2020年   400篇
  2019年   474篇
  2018年   416篇
  2017年   317篇
  2016年   459篇
  2015年   718篇
  2014年   828篇
  2013年   811篇
  2012年   1028篇
  2011年   818篇
  2010年   498篇
  2009年   470篇
  2008年   509篇
  2007年   479篇
  2006年   389篇
  2005年   369篇
  2004年   289篇
  2003年   259篇
  2002年   189篇
  2001年   207篇
  2000年   150篇
  1999年   163篇
  1998年   99篇
  1997年   109篇
  1996年   111篇
  1995年   100篇
  1994年   106篇
  1993年   65篇
  1992年   64篇
  1991年   84篇
  1990年   54篇
  1989年   43篇
  1988年   25篇
  1987年   16篇
  1986年   14篇
  1985年   24篇
  1984年   14篇
  1983年   17篇
  1982年   3篇
  1981年   2篇
  1980年   1篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
1.
Tau protein is present in six different splice forms in the human brain and interacts with microtubules via either 3 or 4 microtubule binding repeats. An increased ratio of 3 repeat to 4 repeat isoforms is associated with neurodegeneration in inherited forms of frontotemporal dementia. Tau over-expression diminishes axonal transport in several systems, but differential effects of 3 repeat and 4 repeat isoforms have not been studied. We examined the effects of tau on mitochondrial transport and found that both 3 repeat and 4 repeat tau change normal mitochondrial distribution within the cell body and reduce mitochondrial localization to axons; 4 repeat tau has a greater effect than 3 repeat tau. Further, we observed that the 3 repeat and 4 repeat tau cause different alterations in retrograde and anterograde transport dynamics with 3 repeat tau having a slightly stronger effect on axon transport dynamics. Our results indicate that tau-induced changes in axonal transport may be an underlying theme in neurodegenerative diseases associated with isoform specific changes in tau's interaction with microtubules.  相似文献   
2.
Five new guaiane sesquiterpenes, 1 – 5 , were isolated from the culture broth of the endophytic fungus Xylaria sp. YM 311647, isolated from Azadirachta indica A. Juss . The structures of these compounds were elucidated on the basis of spectroscopic analyses, and their inhibitory activities against five pathogenic fungi were evaluated. All guaiane sesquiterpenes showed moderate or weak antifungal activities in a broth microdilution assay.  相似文献   
3.
Although superhydrophobic materials have attracted much research interest in anti-icing,some controversy still exists.In this research,we report a cost-effective method used to verify the contribution of area fraction to ice adhesion strength.We tried to partially-embed siliea nanopnarticles into microscale fabrics of a commercial polyamide mesh.Then,the area fraction could be determined by altering the mesh size.Generally,the ice adhesion strength decreases as the area fraction decreases.An ice adhesion strength of~1.9 kPa and a delayed freezing time of~1048 s can be obtained.We attribute the low ice adhesion strength to the combination of superhydro-phobicity and stress concentration.The superhydrophobicity prohibits the water from penetrating into the voids of the meshes,and the small actual contact area leads to stress concentration which promotes interfacial crack propagation.Moreover,our superhydrophobic mesh simultaneously exhibis a micro-nano hierarchical structure and a partally-cmbedded structure.Therefore,the as-prepared superhydrophobic mesh retained the ieephobicity after 20 icingldeicing cycles,and maintained its superhydrophobicity even afier 60 sandpaper-abrasion cycles and a 220"C thermal treatment.  相似文献   
4.
Coenzyme Q (ubiquinone or Q) is a lipid electron and proton carrier in the electron transport chain. In yeast Saccharomyces cerevisiae eleven genes, designated COQ1 through COQ9, YAH1 and ARH1, have been identified as being required for Q biosynthesis. One of these genes, COQ8 (ABC1), encodes an atypical protein kinase, containing six (I, II, III, VIB, VII, and VIII) of the twelve motifs characteristically present in canonical protein kinases. Here we characterize seven distinct Q-less coq8 yeast mutants and show that unlike the coq8 null mutant, each maintained normal steady-state levels of the Coq8 polypeptide. The phosphorylation states of Coq polypeptides were determined with two-dimensional gel analyses. Coq3p, Coq5p, and Coq7p were phosphorylated in a Coq8p-dependent manner. Expression of a human homolog of Coq8p, ADCK3(CABC1) bearing an amino-terminal yeast mitochondrial leader sequence, rescued growth of yeast coq8 mutants on medium containing a nonfermentable carbon source and partially restored biosynthesis of Q(6). The phosphorylation state of several of the yeast Coq polypeptides was also rescued, indicating a profound conservation of yeast Coq8p and human ADCK3 protein kinase function in Q biosynthesis.  相似文献   
5.
The construction of inulin-assimilating and sorbitol-producing fusants was achieved by intergeneric protoplast fusion between Kluyveromyces sp. Y-85 and Saccharomyces cerevisiae E-15. The cells of parental strains were pretreated with 0.1% EDTA (w/v) and 2-mercaptoethanol (0.1%, v/v) and then exposed to 2.0% (w/v) Zymolase at 30 °C for 30–40 min. The optimized fusion condition demonstrated that with the presence of 30% (w/v) polyethylene glycol 6000 (PEG-6000) and 10 mM CaCl2 for 30 min, the fusion frequency reached 2.64 fusants/106 parental cells. The fusants were screened by different characters between two parental strains and further identified by DNA contents, inulinase activity and sorbitol productivity. One of the genetically stable fusants, Strain F27, reached a maximal sorbitol production of 4.87 g/100 ml under optimal fermentation condition.  相似文献   
6.
A graphene-based cylindrical hybrid surface plasmon polariton waveguide, composed of a silicon nanowire core surrounded by a silica layer and then a graphene layer, is investigated using the finite-difference time-domain method. The analytical solutions and the numerical simulation show that an ultra-small mode area and a large propagation length can be achieved with this waveguide. Utilizing the perturbation theory of coupled mode, we demonstrate that the six lowest-order coupling modes originate from the coupling of the three lowest-order single-waveguide modes, and the m?=?1 order yy-coupling mode possesses the maximum coupling length and the minimum crosstalk. This waveguide can be used for photonic integrated circuits in the mid-infrared range.  相似文献   
7.
Methods of separating N-acetyl-1,6-diaminohexane (NADAH) and its immobilization to diol-silica have been developed. Hexamethylene bisacetamide (HMBA) and its metabolite NADAH are used as inducers of leukemia cell differentiation. The inducing mechanism of HMBA is still not clear. Experiments show that HMBA and NADAH undergo relatively strong hydrophobic reactions and do not readily undergo ion-exchange with the proteins of the cytosolic fraction of HL-60 cells during immobilization of NADAH; the retention time of the proteins was longer than that of the phosphatides. These results show that the adsorption of HMBA and NADAH to proteins was higher than that to phosphatides. The expected biospecific receptor binding with HMBA has not been found.  相似文献   
8.
The Na+-K+--ATPase, or Na+ pump, is a member of the P-type ATPase superfamily. In addition to pumping ions, Na+-K+--ATPase is engaged in assembly of multiple protein complexes that transmit signals to different intracellular compartments. The signaling function of the enzyme appears to have been acquired through the evolutionary incorporation of many specific binding motifs that interact with proteins and ligands. In some cell types the signaling Na+ --ATPase and its protein partners are compartmentalized in coated pits (i.e., caveolae) the plasma membrane. Binding of ouabain to the signaling Na+-K+--ATPase activates the cytoplasmic tyrosine kinase Src, resulting in the formation of an active "binary receptor" that phosphorylates and assembles other proteins into different signaling modules. This in turn activates multiple protein kinase cascades including mitogen-activated protein kinases and protein kinase C isozymes in a cell-specific manner. It also increases mitochondrial production of reactive oxygen species (ROS)and regulates intracellular calcium concentration. Crosstalk among the activated pathways eventually results in changes in the expression of a number of genes. Although ouabain stimulates hypertrophic growth in cardiac myocytes and proliferation in smooth muscle cells, it also induces apoptosis in many malignant cells. Finally, the signaling function of the enzyme is also pivotal to ouabain-induced nongenomic effects on cardiac myocytes.  相似文献   
9.
Synthetic biology has significantly advanced the design of mammalian trigger-inducible transgene-control devices that are able to programme complex cellular behaviour. Fruit-based benzoate derivatives licensed as food additives, such as flavours (e.g. vanillate) and preservatives (e.g. benzoate), are a particularly attractive class of trigger compounds for orthogonal mammalian transgene control devices because of their innocuousness, physiological compatibility and simple oral administration. Capitalizing on the genetic componentry of the soil bacterium Comamonas testosteroni, which has evolved to catabolize a variety of aromatic compounds, we have designed different mammalian gene expression systems that could be induced and repressed by the food additives benzoate and vanillate. When implanting designer cells engineered for gene switch-driven expression of the human placental secreted alkaline phosphatase (SEAP) into mice, blood SEAP levels of treated animals directly correlated with a benzoate-enriched drinking programme. Additionally, the benzoate-/vanillate-responsive device was compatible with other transgene control systems and could be assembled into higher-order control networks providing expression dynamics reminiscent of a lap-timing stopwatch. Designer gene switches using licensed food additives as trigger compounds to achieve antagonistic dual-input expression profiles and provide novel control topologies and regulation dynamics may advance future gene- and cell-based therapies.  相似文献   
10.
Human cystathionine β-synthase (CBS) is a unique pyridoxal 5′-phosphate (PLP)-dependent enzyme that has a regulatory heme cofactor. Previous studies have demonstrated the importance of Arg-266, a residue at the heme pocket end of α-helix 8, for communication between the heme and PLP sites. In this study, we have examined the role of the conserved Thr-257 and Thr-260 residues, located at the other end of α-helix 8 on the heme electronic environment and on activity. The mutations at the two positions destabilize PLP binding, leading to lower PLP content and ∼2- to ∼500-fold lower activity compared with the wild-type enzyme. Activity is unresponsive to PLP supplementation, consistent with the pyridoxine-nonresponsive phenotype of the T257M mutation in a homocystinuric patient. The H2S-producing activities, also impacted by the mutations, show a different pattern of inhibition compared with the canonical transsulfuration reaction. Interestingly, the mutants exhibit contrasting sensitivities to the allosteric effector, S-adenosylmethionine (AdoMet); whereas T257M and T257I are inhibited, the other mutants are hyperactivated by AdoMet. All mutants showed an increased propensity of the ferrous heme to form an inactive species with a 424 nm Soret peak and exhibited significantly reduced enzyme activity in the ferrous and ferrous-CO states. Our results provide the first evidence for bidirectional transmission of information between the cofactor binding sites, suggest the additional involvement of this region in allosteric communication with the regulatory AdoMet-binding domain, and reveal the potential for independent modulation of the canonical transsulfuration versus H2S-generating reactions catalyzed by CBS.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号