首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   225篇
  免费   17篇
  242篇
  2022年   2篇
  2021年   4篇
  2020年   2篇
  2019年   2篇
  2018年   2篇
  2017年   3篇
  2016年   4篇
  2015年   14篇
  2013年   12篇
  2012年   13篇
  2011年   6篇
  2010年   5篇
  2009年   7篇
  2008年   6篇
  2007年   5篇
  2006年   5篇
  2005年   8篇
  2004年   18篇
  2003年   7篇
  2002年   9篇
  2001年   3篇
  2000年   10篇
  1999年   9篇
  1998年   6篇
  1997年   2篇
  1996年   2篇
  1995年   3篇
  1993年   3篇
  1992年   3篇
  1991年   5篇
  1990年   2篇
  1989年   4篇
  1988年   2篇
  1987年   4篇
  1986年   4篇
  1985年   8篇
  1984年   2篇
  1983年   5篇
  1981年   2篇
  1978年   4篇
  1977年   3篇
  1974年   2篇
  1973年   3篇
  1971年   2篇
  1967年   2篇
  1961年   1篇
  1959年   1篇
  1957年   1篇
  1953年   1篇
  1952年   1篇
排序方式: 共有242条查询结果,搜索用时 15 毫秒
1.
Vertebrate metamorphosis is often marked by dramatic morphological and physiological changes of the alimentary tract, along with major shifts in diet following development from larva to adult. Little is known about how these developmental changes impact the gut microbiome of the host organism. The metamorphosis of the sea lamprey (Petromyzon marinus) from a sedentary filter-feeding larva to a free-swimming sanguivorous parasite is characterized by major physiological and morphological changes to all organ systems. The transformation of the alimentary canal includes closure of the larval esophagus and the physical isolation of the pharynx from the remainder of the gut, which results in a nonfeeding period that can last up to 8 months. To determine how the gut microbiome is affected by metamorphosis, the microbial communities of feeding and nonfeeding larval and parasitic sea lamprey were surveyed using both culture-dependent and -independent methods. Our results show that the gut of the filter-feeding larva contains a greater diversity of bacteria than that of the blood-feeding parasite, with the parasite gut being dominated by Aeromonas and, to a lesser extent, Citrobacter and Shewanella. Phylogenetic analysis of the culturable Aeromonas from both the larval and parasitic gut revealed that at least five distinct species were represented. Phenotypic characterization of these isolates revealed that over half were capable of sheep red blood cell hemolysis, but all were capable of trout red blood cell hemolysis. This suggests that the enrichment of Aeromonas that accompanies metamorphosis is likely related to the sanguivorous lifestyle of the parasitic sea lamprey.  相似文献   
2.
We demonstrate that both phospholipase A1 and phospholipase A2 are associated with isolated yeast mitochondria (Saccharomyces cerevisiae). Activity assays indicate that, unlike most other mitochondrial phospholipases A, the yeast enzymes are Ca(2+)-independent with acidic (pH 4-5) as well as alkaline (pH 8-9) pH optima. Data obtained with mitochondria isolated from either fermenting or respiring cells, and initial observations with a petite strain, strongly suggest that a phospholipase A2 with an acidic pH optimum functions in the in vivo adaptation and maintenance of mitochondrial membranes required for respiration.  相似文献   
3.
R Gysin  B Yost  S D Flanagan 《Biochemistry》1986,25(6):1271-1278
Creatine kinase, actin, and nu 1 are three proteins of Mr 43 000 associated with membranes from electric organ highly enriched in nicotinic acetylcholine receptor. High levels of creatine kinase are required to maintain adequate ATP levels, while actin may play a role in maintaining the synaptic cytoskeleton. Previous investigations have prompted the conclusion that postsynaptic specializations at the receptor-enriched membrane domains in electroplax contain the brain form of creatine kinase rather than the form of creatine kinase predominantly found in muscle. We have examined this conclusion by purifying Torpedo brain creatine kinase to virtual homogeneity in order to examine its immunochemical, molecular, and electrophoretic properties. On the basis of immunological cross-reactivity and isozyme analysis, the receptor-associated creatine kinase is identified to be of the muscle type. When the molecular characteristics of Torpedo brain and muscle creatine kinase are compared, the brain enzyme is positioned at a more basic pH during chromatofocusing and on two-dimensional gel electrophoresis (pI = 7.5-7.9). Furthermore, electrophoretic mobilities of the brain and muscle forms of creatine kinase differ in sodium dodecyl sulfate electrophoresis: the brain isozyme of creatine kinase has lower apparent molecular weight (Mr 41 000) when compared with the muscle enzyme (Mr 43 000). On the basis of the results of our current investigations, the hypothesis that the brain isozyme of creatine kinase is a component of the postsynaptic specializations of the Torpedo californica electroplax must be abandoned. Recent sequence data have established close homology between Torpedo and mammalian muscle creatine kinases. On the basis of electrophoretic criteria, our results indicate that a lower degree of homology exists between the brain isozymes.  相似文献   
4.
The effect of choline deficiency on the de novo pathway for phosphatidylcholine (PC) synthesis in the lung was investigated in rats fed a washed soy protein (lipotrophic) diet deficient in choline and methionine for 2-3 wk. Lungs from lipotrophic rats showed a decreased content of choline and choline-phosphate (P less than 0.05) compared with control but no change in content of cytidine 5'-diphosphocholine or PC. Isolated perfused lungs from lipotrophic rats were evaluated for choline and fatty acid utilization for PC synthesis. Lipotrophic lungs perfused with 5 microM [14C-methyl]-choline chloride showed increased incorporation into PC while there was no significant effect at saturating levels of choline (100 microM). There was increased incorporation of [1-14C]-palmitic acid into PC and diglyceride and increased incorporation of D-[U-14C]glucose into fatty acids of PC. Increased choline and glucose incorporation was not due to alteration of intracellular specific activity of these substrates. This study indicates the utilization of choline and fatty acid for PC synthesis is stimulated as a result of choline deficiency while lung CDP-choline concentration is maintained, possibly through regulation of choline phosphate cytidyl transferase activity. These mechanisms compensate for decreased choline availability to maintain the PC content of lungs.  相似文献   
5.
A proteinase (EC 3.4.-.-) active at physiological pH has been isolated from human skin utilizing gel filtration and affinity chromatography techniques. The proteinase has a molecular weight of approx. 28 000 and it is inhibited by alpha 2-macroglobulin, alpha 1-antitrypsin, C-1 inactivatory, soybean trypsin inhibitor and diisopropyl fluorophosphate. 2njection of 1 ng of purified proteinase into rabbit skin induces polymorphonuclear leukocyte infiltration of the cutis. Inhibition of enzyme activity with diisopropyl fluorophosphate inhibits the chemotactic effect. Addition of 0.2 microgram/ml of purified proteinase to fibroblast cultures kills the cells within minutes. This proteinase may play a significant role in modulating the inflammatory response after cellular injury.  相似文献   
6.
The mechanism of pneumotoxicity of 3-methylindole has been postulated to occur via protein alkylation or lipid peroxidation. This report describes the effects of the addition of 3-methylindole to goat lung microsomes to evaluate the possibility that this xenobiotic may increase NADPH-supported lipid peroxidation. Concentrations of malondialdehyde were measured as an index of lipid peroxidation. Instead of a stimulation of lipid peroxidation by 3-methylindole, a complete inhibition of lipid peroxidation was produced by concentrations of 3-methylindole as low as 10 microM. The addition of 3-methylindole to actively peroxidizing microsomes (NADPH-supported) caused an immediate cessation of malondialdehyde production. These results demonstrate that 3-methylindole pneumotoxicity does not proceed by a mechanism of lipid peroxidation, but in fact, this molecule may act as an effective antioxidant to prevent lipid peroxidation in pulmonary tissue.  相似文献   
7.
8.
125I-labeled 1-(p-hydroxyphenyl) 2-guanidinoethane (N-guanyltyramine), previously used to assay for the bacterial toxin choleragen (Mekalanos, J.J., Collier, R.J. and Romig, W.R. (1979) J. Biol. Chem. 254, 5849-5854) was utilized to identify NAD:arginine ADPribosyltransferases in animal tissues. The use of this radiolabelled ADPribose acceptor, rather than radiolabelled NAD, would bypass the problem posed by the almost ubiquitous presence of enzymes that degrade NAD. With a homogeneous ADPribosyltransferase from turkey erythrocytes, NAD and 125I-labeled guanyltyramine as ADPribose acceptor, formation of ADPribosyl 125I-guanyltyramine was linear with time and enzyme concentration. The product was indistinguishable on both thin-layer and high-performance liquid chromatography from that formed by choleragen. Using 125I-guanyltyramine, ADPribosyltransferase activity was also demonstrated in crude turkey erythrocyte cytosolic and membrane fractions. When rat liver was fractionated, apparent activity was detected primarily in the microsomes. The NAD-dependent product of the microsomal reaction was, however, distinguished from the turkey erythrocyte transferase product by thin-layer and DEAE-Sephadex chromatography; this product had a retention time identical to that of free 125I on high-performance liquid chromatography. In addition to NAD, the microsomal deiodinase activity was supported by NADH, NADP and NADPH. Phenyl boronate selectively bound ADPribosyl 125I-guanyltyramine and other metabolites of 125I-guanyltyramine which were formed by microsomes in a NAD-dependent process. These metabolites were distinguished from ADPribosyl 125I-guanyltyramine by high-performance liquid chromatography. These results indicate that in some cases, for example, turkey erythrocyte cytosolic and membrane fractions, 125I-guanyltyramine can be used to quantify ADPribosyltransferases in crude mixtures, whereas in others, for example, rat liver microsomes, high-performance liquid chromatographic analysis must be used to identify products.  相似文献   
9.
Cultivation of dedicated soil plots called ‘landfarms' is an effective technology for bioremediation of hydrocarbon waste generated by various industrial practices. To understand the influence of soil conditions on landfarm microbial communities, analysis of bacterial and fungal community structure using next-generation sequencing at different sections and depths was performed across a hydrocarbon-waste landfarm in Regina, Saskatchewan, Canada. While a core set of hydrocarbon-associated bacterial and fungal taxa are present throughout the landfarm, unique bacterial and fungal operational taxonomic units are differentially abundant at sections within the landfarm, which correlate with differences in soil physiochemical properties and management practices. Increased frequency of waste application resulted in strong positive correlations between bacterial community assemblages and elevated amounts of oil, grease and F3 – F4 hydrocarbon fractions. In areas of standing water and lower application of hydrocarbon, microbial community structure correlated with soil pH, trace nutrients and metals. Overall, diversity and structure of bacterial communities remain relatively stable across the landfarm, while in contrast, fungal community structure appears more responsive to soil oxygen conditions. Results are consistent with the hypothesis that years of bioremediation activity have shaped microbial communities; however, several management practices can be undertaken to increase efficiency of remediation, including the removal of standing water and soil tilling across the landfarm.  相似文献   
10.
Recent advances in the ability to efficiently characterize tumor genomes is enabling targeted drug development, which requires rigorous biomarker-based patient selection to increase effectiveness. Consequently, representative DNA biomarkers become equally important in pre-clinical studies. However, it is still unclear how well these markers are maintained between the primary tumor and the patient-derived tumor models. Here, we report the comprehensive identification of somatic coding mutations and copy number aberrations in four glioblastoma (GBM) primary tumors and their matched pre-clinical models: serum-free neurospheres, adherent cell cultures, and mouse xenografts. We developed innovative methods to improve the data quality and allow a strict comparison of matched tumor samples. Our analysis identifies known GBM mutations altering PTEN and TP53 genes, and new actionable mutations such as the loss of PIK3R1, and reveals clear patient-to-patient differences. In contrast, for each patient, we do not observe any significant remodeling of the mutational profile between primary to model tumors and the few discrepancies can be attributed to stochastic errors or differences in sample purity. Similarly, we observe ∼96% primary-to-model concordance in copy number calls in the high-cellularity samples. In contrast to previous reports based on gene expression profiles, we do not observe significant differences at the DNA level between in vitro compared to in vivo models. This study suggests, at a remarkable resolution, the genome-wide conservation of a patient’s tumor genetics in various pre-clinical models, and therefore supports their use for the development and testing of personalized targeted therapies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号