排序方式: 共有45条查询结果,搜索用时 15 毫秒
1.
2.
We have adapted bioluminescence methods to be able to measure phosphodiesterase (PDE) activity in a one-step technique. The method employs a four-enzyme system (PDE, adenylate kinase (AK) using excess CTP instead of ATP as substrate, pyruvate kinase (PK), and firefly luciferase) to generate ATP, with measurement of the concomitant luciferase-light emission. Since AK, PK, and luciferase reactions are coupled to recur in a cyclic manner, AMP recycling maintains a constant rate of ATP formation, proportional to the steady-state AMP concentration. The cycle can be initiated by the PDE reaction that yields AMP. As long as the PDE reaction is rate limiting, the system is effectively at steady state and the bioluminescence kinetics progresses at a constant rate proportional to the PDE activity. In the absence of cAMP and PDE, low concentrations of AMP trigger the AMP cycling, which allows standardizing the system. The sensitivity of the method enables detection of <1 μU (pmol/min) of PDE activity in cell extracts containing 0.25–10 μg protein. Assays utilizing pure enzyme showed that 0.2 mM IBMX completely inhibited PDE activity. This single-step enzyme- and substrate-coupled cyclic-reaction system yields a simplified, sensitive, reproducible, and accurate method for quantifying PDE activities in small biological samples. 相似文献
3.
Molecular mechanisms of mammalian ribosome biogenesis remain largely unexplored. Here we develop a series of transposon-derived dominant mutants of Pes1, the mouse homolog of the zebrafish Pescadillo and yeast Nop7p implicated in ribosome biogenesis and cell proliferation control. Six Pes1 mutants selected by their ability to reversibly arrest the cell cycle also impair maturation of the 28S and 5.8S rRNAs in mouse cells. We show that Pes1 physically interacts with the nucleolar protein Bop1, and both proteins direct common pre-rRNA processing steps. Interaction with Bop1 is essential for the efficient incorporation of Pes1 into nucleolar preribosomal complexes. Pes1 mutants defective for the interaction with Bop1 lose the ability to affect rRNA maturation and the cell cycle. These data show that coordinated action of Pes1 and Bop1 is necessary for the biogenesis of 60S ribosomal subunits. 相似文献
4.
Pruitt JR Batt DG Wacker DA Bostrom LL Booker SK McLaughlin E Houghton GC Varnes JG Christ DD Covington M Das AM Davies P Graden D Kariv I Orlovsky Y Stowell NC Vaddi KG Wadman EA Welch PK Yeleswaram S Solomon KA Newton RC Decicco CP Carter PH Ko SS 《Bioorganic & medicinal chemistry letters》2007,17(11):2992-2997
DPC168, a benzylpiperidine-substituted aryl urea CCR3 antagonist evaluated in clinical trials, was a relatively potent inhibitor of the 2D6 isoform of cytochrome P-450 (CYP2D6). Replacement of the cyclohexyl central ring with saturated heterocycles provided potent CCR3 antagonists with improved selectivity against CYP2D6. The favorable preclinical profile of DPC168 was maintained in an acetylpiperidine derivative, BMS-570520. 相似文献
5.
Recently, we found that testicular macrophages produce 25-hydroxycholesterol (25-HC) and express 25-hydroxylase, the enzyme that converts cholesterol to 25-HC. In addition, 25-HC may be an important paracrine factor mediating the known interactions between macrophages and neighboring Leydig cells, because it is efficiently converted to testosterone by Leydig cells. The purpose of the present study was to determine if testosterone can regulate the production of 25-HC in rat testicular macrophages, representing a potential negative-feedback loop from Leydig cells. We found that expression of 25-hydroxylase mRNA and production of 25-HC by cultured testicular macrophages were significantly inhibited by testosterone at 10 micro g/ml. This dose of testosterone did not have an effect on cell viability and did not change the rate of mRNA degradation in the presence of actinomycin D. These studies indicate that production of 25-HC is negatively regulated by testosterone, which may be representative of a paracrine negative-feedback loop. 相似文献
6.
7.
Batt DG Houghton GC Roderick J Santella JB Wacker DA Welch PK Orlovsky YI Wadman EA Trzaskos JM Davies P Decicco CP Carter PH 《Bioorganic & medicinal chemistry letters》2005,15(3):787-791
The synthesis and structure-activity relationships of N-arylalkylpiperidylmethyl ureas as antagonists of the CC chemokine receptor-3 (CCR3) are presented. These compounds displayed potent binding to the receptor as well as functional antagonism of eotaxin-elicited effects on eosinophils. 相似文献
8.
Analytical precision,biological variation,and mathematical normalization in high data density metabolomics 总被引:1,自引:0,他引:1
Yevgeniya?I.?Shurubor Ugo?Paolucci Boris?F.?Krasnikov Wayne?R.?Matson Bruce?S.?KristalEmail author 《Metabolomics : Official journal of the Metabolomic Society》2005,1(1):75-85
Metabolic serotypes sensitive to caloric intake may enable sera metabolomic profiles to validate epidemiological parameters and predict disease risk in humans. This long-range goal is complicated by the lack of known state markers and the requirement for simultaneous monitoring of multiple small changes. Therefore, analytical precision for appropriate high data density studies using HPLC separations coupled with coulometric array detectors was evaluated over a two month period in pooled rat sera samples (previously collected and stored at –80 °C), and in authentic biochemical standards. In sera, mean coefficients of variation (CV) of retention time and ratio accuracy within the established metabolic serotype varied within ±1% and ±3%, respectively. In sets of purified standards, the same parameters fluctuated, correspondently, in ranges of ±0.1% and ±1%. Median CV of the metabolite concentrations were ~13% in standards and ~11–19% in sera, and varied non-monotonically with the analytical system status and experimental design. These parameters were shown to be sufficiently controlled so as not to dominate intra-group biological variability in serum metabolomics studies. Continuation of experimental runs across an analytical breakpoint (column replacement) was associated with disproportionate changes in metabolite concentrations, independent of maintained analytical precision. These changes were sufficient to shift overall profile localization in megavariate projection analyses. We developed a mathematical approach to normalize this break and use partial least squares projection to latent structure discriminant analysis to confirm validity of this normalization approach. This generally applicable mathematical correction helps enable longer term high data density studies by removing a critical source of systemic variation. 相似文献
9.
Boian S. Alexandrov Vladimir Gelev Yevgeniya Monisova Ludmil B. Alexandrov Alan R. Bishop Kim
. Rasmussen Anny Usheva 《Nucleic acids research》2009,37(7):2405-2410
No simple model exists that accurately describes the melting behavior and breathing dynamics of double-stranded DNA as a function of nucleotide sequence. This is especially true for homogenous and periodic DNA sequences, which exhibit large deviations in melting temperature from predictions made by additive thermodynamic contributions. Currently, no method exists for analysis of the DNA breathing dynamics of repeats and of highly G/C- or A/T-rich regions, even though such sequences are widespread in vertebrate genomes. Here, we extend the nonlinear Peyrard–Bishop–Dauxois (PBD) model of DNA to include a sequence-dependent stacking term, resulting in a model that can accurately describe the melting behavior of homogenous and periodic sequences. We collect melting data for several DNA oligos, and apply Monte Carlo simulations to establish force constants for the 10 dinucleotide steps (CG, CA, GC, AT, AG, AA, AC, TA, GG, TC). The experiments and numerical simulations confirm that the GG/CC dinucleotide stacking is remarkably unstable, compared with the stacking in GC/CG and CG/GC dinucleotide steps. The extended PBD model will facilitate thermodynamic and dynamic simulations of important genomic regions such as CpG islands and disease-related repeats. 相似文献
10.