首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   688篇
  免费   94篇
  782篇
  2022年   9篇
  2021年   17篇
  2020年   7篇
  2018年   5篇
  2017年   13篇
  2016年   13篇
  2015年   28篇
  2014年   24篇
  2013年   30篇
  2012年   59篇
  2011年   30篇
  2010年   34篇
  2009年   34篇
  2008年   21篇
  2007年   27篇
  2006年   28篇
  2005年   23篇
  2004年   28篇
  2003年   36篇
  2002年   25篇
  2001年   20篇
  2000年   11篇
  1999年   16篇
  1998年   10篇
  1997年   13篇
  1996年   8篇
  1994年   6篇
  1993年   8篇
  1992年   15篇
  1991年   9篇
  1990年   10篇
  1989年   8篇
  1988年   7篇
  1987年   8篇
  1986年   10篇
  1985年   9篇
  1984年   6篇
  1983年   5篇
  1980年   8篇
  1979年   6篇
  1975年   5篇
  1974年   6篇
  1973年   6篇
  1972年   6篇
  1971年   13篇
  1970年   6篇
  1969年   4篇
  1968年   8篇
  1966年   5篇
  1960年   4篇
排序方式: 共有782条查询结果,搜索用时 15 毫秒
1.
2.
3.
Adenovirus E1A transforming function requires two distinct regions of the protein. Transforming activity is closely linked with the presence of a region designated conserved domain 2 and the ability of this region to bind the product of the cellular retinoblastoma tumor suppressor gene. We have investigated the biological properties of the second transforming region of E1A, which is located near the N terminus. Transformation-defective mutants containing deletions in the N terminus (deletion of residues between amino acids 2 and 36) were deficient in the ability to induce DNA synthesis and repress insulin enhancer-stimulated activity. The function of the N-terminal region correlated closely with binding of the 300-kilodalton E1A-associated protein and not with binding of the retinoblastoma protein. These results indicate that transformation by E1A is mediated by two functionally independent regions of the protein which interact with different specific cellular proteins and suggest that the 300-kilodalton E1A-associated protein plays a major role in E1A-mediated cell growth control mechanisms.  相似文献   
4.
Efforts to transfer wheat curl mite (Eriophyes tulipae Keifer) resistance from Lophopyrum ponticum 10X (Podb.) Love to bread wheat (Triticum aestivum L.) have resulted in the production of a number of cytogenetic stocks, including an addition line of 6Ag, a ditelo addition line, and a wheat-Lophopyrum translocation line. Characterization of these lines with C-banding, in situ hybridization with a Lophopyrum species-specific repetitive DNA probe (pLeUCD2), and Southern blotting with pLeUCD2 and a 5S ribosomal DNA probe (pScT7) confirmed that the distal portion of the short arm of 6Ag was translocated onto the distal portion of 5BS (5BL. 5BS-6AgS). It was also determined that the ditelo addition was an acrocentric chromosome of 6AgS.  相似文献   
5.
The IncHI2 plasmid R478 specifies resistance to potassium tellurite (Te(r)), to some bacteriophages (Phi), and to pore-forming colicins (PacB). The genes encoding the three phenotypes are linked, and an 8.4-kb fragment of R478 DNA encoding them cannot be subcloned unless cocloned with a second section of the plasmid. Subclone pKFW4A contains a 5.9-kb BamHI-EcoRI fragment which caused some toxicity when present in Escherichia coli cells. Bacterial cells containing freshly transformed pKFW4A, examined by light microscopy and electron microscopy, had a filamentous morphology consistent with a block in septation. Insertion of transposon Tn1000 into terZ, -A, -B, and -C genes of pKFW4A resulted in the loss of the filamentation phenotype. Deletion of several regions of the clone confirmed that these latter components are involved in the filamentation phenotype. The region specifying protection from toxicity caused by the larger 8.4-kb fragment (encompassing this cluster and the entire 5.9-kb section of pKFW4A) was sequenced and analyzed by T7 polymerase expression and Tn1000 mutagenesis. Three open reading frames, terW, terY, and terX, were identified in a 2.6-kb region. Two polypeptides with approximate molecular masses of 18 and 28 kDa were expressed in CSRDE3 cells and were consistent with TerW (17.1 kDa; 155 amino acids [aa]) and TerY (26.9 kDa; 248 aa), whereas a protein of 213 aa deduced from terX was not observed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The terX gene product shows strong identity with the previously identified TerE, TerD, and TerZ polypeptides, and there is a conserved motif of 13 residues, GDN(R/L)TG(E/A)GDGDDE, within this group of polypeptides. Complementation analysis indicated that terW, located approximately 6.0 kb upstream of terZ, brings about protection of cells from toxic effects of components of the Te(r), Phi, and PacB cluster.  相似文献   
6.
7.
8.
The mechanism for generating double minutes chromosomes (dmin) and homogeneously staining regions (hsr) in cancer is still poorly understood. Through an integrated approach combining next-generation sequencing, single nucleotide polymorphism array, fluorescent in situ hybridization and polymerase chain reaction-based techniques, we inferred the fine structure of MYC-containing dmin/hsr amplicons harboring sequences from several different chromosomes in seven tumor cell lines, and characterized an unprecedented number of hsr insertion sites. Local chromosome shattering involving a single-step catastrophic event (chromothripsis) was recently proposed to explain clustered chromosomal rearrangements and genomic amplifications in cancer. Our bioinformatics analyses based on the listed criteria to define chromothripsis led us to exclude it as the driving force underlying amplicon genesis in our samples. Instead, the finding of coexisting heterogeneous amplicons, differing in their complexity and chromosome content, in cell lines derived from the same tumor indicated the occurrence of a multi-step evolutionary process in the genesis of dmin/hsr. Our integrated approach allowed us to gather a complete view of the complex chromosome rearrangements occurring within MYC amplicons, suggesting that more than one model may be invoked to explain the origin of dmin/hsr in cancer. Finally, we identified PVT1 as a target of fusion events, confirming its role as breakpoint hotspot in MYC amplification.  相似文献   
9.
Oral administration of tumour cells induces an immune hypo-responsiveness known as oral tolerance. We have previously shown that oral tolerance to a cancer is tumour antigen specific, non-cross-reactive and confers a tumour growth advantage. We investigated the utilisation of regulatory T cell (Treg) depletion on oral tolerance to a cancer and its ability to control tumour growth. Balb/C mice were gavage fed homogenised tumour tissue – JBS fibrosarcoma (to induce oral tolerance to a cancer), or PBS as control. Growth of subcutaneous JBS tumours were measured; splenic tissue excised and flow cytometry used to quantify and compare systemic Tregs and T effector (Teff) cell populations. Prior to and/or following tumour feeding, mice were intraperitoneally administered anti-CD25, to inactivate systemic Tregs, or given isotype antibody as a control. Mice which were orally tolerised prior to subcutaneous tumour induction, displayed significantly higher systemic Treg levels (14% vs 6%) and faster tumour growth rates than controls (p<0.05). Complete regression of tumours were only seen after Treg inactivation and occurred in all groups - this was not inhibited by tumour feeding. The cure rates for Treg inactivation were 60% during tolerisation, 75% during tumour growth and 100% during inactivation for both tolerisation and tumour growth. Depletion of Tregs gave rise to an increased number of Teff cells. Treg depletion post-tolerisation and post-tumour induction led to the complete regression of all tumours on tumour bearing mice. Oral administration of tumour tissue, confers a tumour growth advantage and is accompanied by an increase in systemic Treg levels. The administration of anti-CD25 Ab decreased Treg numbers and caused an increase in Teffs. Most notably Treg cell inhibition overcame established oral tolerance with consequent tumor regression, especially relevant to foregut cancers where oral tolerance is likely to be induced by the shedding of tumour tissue into the gut.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号