首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   150篇
  免费   7篇
  157篇
  2018年   2篇
  2015年   3篇
  2014年   3篇
  2013年   5篇
  2012年   7篇
  2011年   7篇
  2010年   5篇
  2009年   3篇
  2008年   5篇
  2007年   4篇
  2006年   8篇
  2005年   8篇
  2004年   5篇
  2003年   4篇
  2002年   8篇
  2001年   2篇
  2000年   6篇
  1999年   5篇
  1998年   3篇
  1997年   7篇
  1996年   4篇
  1995年   1篇
  1994年   6篇
  1993年   5篇
  1992年   6篇
  1991年   2篇
  1990年   3篇
  1989年   3篇
  1988年   1篇
  1987年   2篇
  1986年   1篇
  1985年   4篇
  1984年   4篇
  1983年   1篇
  1982年   1篇
  1981年   2篇
  1978年   2篇
  1976年   1篇
  1974年   1篇
  1973年   2篇
  1971年   1篇
  1967年   2篇
  1965年   2篇
排序方式: 共有157条查询结果,搜索用时 15 毫秒
1.
2.
Immobilized artificial membrane (IAM) HPLC supports have been used to immobilize the enzymes alpha-chymotrypsin and trypsin. The enzymes were trapped in hydrophobic cavities on the support and were not covalently attached to the IAM surface. The resulting IAM-enzyme supports retained the hydrolytic activity of the immobilized enzymes: the IAM-trypsin support catalyzed the hydrolysis of N alpha-benzoyl-DL-arginine-p-nitroanilide (BAPNA), and the IAM-alpha-chymotrypsin support (IAM-ACHT) catalyzed the hydrolysis of a number of substrates, including tryptophan methyl ester. The activities of both supports were decreased by known enzyme inhibitors and the activity of the IAM-ACHT was affected by changes in pH and temperature. When a substrate was chromatographed on an IAM-ACHT HPLC, the hydrolytic activity of the immobilized enzyme could be determined from the resulting substrate/product ratios. These data were obtained either directly from the IAM-ACHT chromatogram or from the chromatogram produced by a coupled column system. The results of this study indicate that IAM-immobilized alpha-chymotrypsin and trypsin can be used as chromatographic probes for the qualitative determination of enzyme/substrate and enzyme/inhibitor interactions.  相似文献   
3.
4.
Enantioselective HPLC methods have been developed for the resolution of (RS)-2-phenylcyclohexanone (compound 1) and (RS)-2-phenyltetrahydropyran-4-one (compound 4) and the diastereoselective and enantioselective separations of their respective cis- and trans-alcohols; reduction of compound 1 yields trans- and cis-2-phenyl-1-cyclohexanol (compounds 2 and 3, respectively) and reduction of compound 4 yields trans- and cis-2-phenyl-tetrahydropyran-4-ol (compounds 5 and 6, respectively). Compounds 1, 2, and 3 were stereochemically resolved using a chiral stationary phase (CSP) based upon amylose tris(3,5-dimethylphenyl carbamate) coated on 10 μm silica-gel (Chiralpak AD-CSP). Compounds 4, 5, and 6 were stereochemically resolved on a coupled column system where a column containing a CSP based upon cellulose tris(3,5-dimethylphenyl carbamate) coated on 5 μm silica (Chiralcel OD-H-CSP) was coupled in series to the AD-CSP. The strategy employed in the identification of the peaks in the respective chromatograms is also discussed in this presentation. Chirality 8:551–555, 1996. © 1997 Wiley-Liss, Inc.  相似文献   
5.
Norepinephrine is N-methylated to epinephrine by the catalytic effect of the terminal enzyme in catecholamine biosynthesis, phenylethanolamine N-methyltransferase (PNMT). PNMT has been covalently immobilized onto a silica-based liquid chromatographic support, glutaraldehyde-P (Glut-P). The resulting PNMT-Glut-P stationary phase (PNMT-SP) was enzymatically active, stable, and reusable. Standard Michaelis-Menten kinetic studies were performed with both free and immobilized PNMT and known substrates and inhibitors were examined. The results demonstrate that the PNMT-SP can be utilized for the rapid screening of potential PNMT substrates as well as the screening of compounds for PNMT inhibitory activity.  相似文献   
6.
7.
A sensitive enantioselective liquid chromatographic assay with mass spectrometric detection has been developed and validated for the simultaneous determination of plasma concentrations of (R)- and (S)-ketamine, and (R)- and (S)-norketamine. The compounds were extracted from human plasma using solid-phase extraction and then directly injected into the LC-MS system for detection and quantification. Enantioselective separations were achieved on a liquid chromatographic chiral stationary phase based upon immobilized alpha(1)-acid glycoprotein (the Chiral AGP column). The separations were achieved using a mobile phase composed of 2-propanol-ammonium acetate buffer (10 mM, pH 7.6) (6:94, v/v), a flow-rate of 0.5 ml/min and a temperature of 25 degrees C. Under these conditions, the analysis time was 20 min. Detection of the ketamine, norketamine and bromoketamine (internal standard) enantiomers was achieved using selected ion monitoring at m/z 238.1, 224.1 and 284.0, respectively. Extracted calibration curves were linear from 1 to 125 ng/ml per enantiomer for each analyte with correlation coefficients better than 0.9993 and intra- and inter-day RSDs of less than 8.0%. The method was applied to samples from a clinical study of ketamine in pain management.  相似文献   
8.
A sensitive enantioselective liquid chromatographic assay with mass spectrometric detection (LC-MS) has been developed and validated for the simultaneous determination of saliva concentrations of (R)- and (S)-methadone (Met) and (R)- and (S)-2-ethylidene-1,5-dimethyl-3,3-diphenyl-pyrrolidine (EDDP, a primary metabolite of Met). Saliva specimens were collected using Salivette devices (Sarsedt), and centrifuged; collected saliva was then spiked with deuterated internal standards, D3-Met and D3-EDDP, and directly injected into the LC-MS. Enantioselective separations were achieved on a liquid chromatographic chiral stationary phase (CSP) based upon immobilized alpha(1)-acid glycoprotein (AGP) using a mobile phase composed of acetonitrile: ammonium acetate buffer (10mM, pH 7.0) in a ratio of 18:82 (v/v), a flow rate of 0.9 ml/min and a temperature of 25 degrees C. Under these conditions, enantioselective separations were observed for methadone (alpha=1.30) and EDDP (alpha=1.17) within 15 min. Met, EDDP, D3-Met and D3-EDDP were detected using selected ion monitoring at m/z 310.20, 278.20, 313.20 and 281.20, respectively. Linear relationships between peak height ratio and drug-enantiomer concentrations were obtained for methadone in the range of 5.0-600.0 ng/ml, and for EDDP from 0.5 to 15.0 ng/ml per enantiomer with correlation coefficients better than 0.9994, where lower limit of quantification (LLOQ) for Met was 5 ng/ml and for EDDP 0.5 ng/ml. Acceptable intra- and inter-day precision of the method (CVs<4.0%) and accuracy (CVs<4.0%) were obtained. These findings demonstrate the accuracy and precision of the method used to successfully analyze saliva obtained from patients enrolled in a methadone-maintenance program.  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号