首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   869篇
  免费   50篇
  919篇
  2024年   1篇
  2023年   8篇
  2022年   24篇
  2021年   30篇
  2020年   11篇
  2019年   17篇
  2018年   23篇
  2017年   22篇
  2016年   31篇
  2015年   43篇
  2014年   53篇
  2013年   59篇
  2012年   90篇
  2011年   74篇
  2010年   44篇
  2009年   39篇
  2008年   53篇
  2007年   48篇
  2006年   44篇
  2005年   51篇
  2004年   45篇
  2003年   30篇
  2002年   29篇
  2001年   4篇
  2000年   7篇
  1999年   2篇
  1998年   10篇
  1997年   6篇
  1996年   3篇
  1995年   2篇
  1994年   1篇
  1993年   2篇
  1992年   4篇
  1991年   2篇
  1990年   2篇
  1989年   1篇
  1988年   2篇
  1985年   1篇
  1983年   1篇
排序方式: 共有919条查询结果,搜索用时 0 毫秒
1.
The direct effect of different vanadium compounds upon alkaline phosphatase (ALP) activity was investigated. Vanadate and vanadyl inhibited both the soluble and particulate ALP activity from UMR.106 cells and from bovine intestinal ALP. We have also shown the inhibition of ALP activity in the soluble fraction of osteoblasts by peroxo and hydroperoxo vanadium compounds. ALP activity in the particulate fraction was not inhibited by these species; nor was the bovine intestinal ALP. Using inhibitors of Tyr-phosphatase (PTPases), the soluble ALP was partially characterized as a PTPase. The major activity in the particulate fraction represents the bone-specific ALP-activity. This study demonstrates that different forms of vanadium are direct inhibitors of ALP activity. This effect is dependent on the enzymatic activity investigated and on the origin of the ALP.  相似文献   
2.
3.
4.
5.
The olfactory system, particularly the olfactory epithelium, presents a unique opportunity to study the regenerative capabilities of the brain, because of its ability to recover after damage. In this study, we ablated olfactory sensory neurons with methimazole and followed the anatomical and functional recovery of circuits expressing genetic markers for I7 and M72 receptors (M72-IRES-tau-LacZ and I7-IRES-tau-GFP). Our results show that 45 days after methimazole-induced lesion, axonal projections to the bulb of M72 and I7 populations are largely reestablished. Furthermore, regenerated glomeruli are re-formed within the same areas as those of control, unexposed mice. This anatomical regeneration correlates with functional recovery of a previously learned odorant-discrimination task, dependent on the cognate ligands for M72 and I7. Following regeneration, mice also recover innate responsiveness to TMT and urine. Our findings show that regeneration of neuronal circuits in the olfactory system can be achieved with remarkable precision and underscore the importance of glomerular organization to evoke memory traces stored in the brain.  相似文献   
6.
An Arthrobacter strain, able to utilize 4-chlorobenzoic acid as the sole carbon and energy source, was isolated and characterized. The first step of the catabolic pathway was found to proceed via a hydrolytic dehalogenation that leads to the formation of 4-hydroxybenzoic acid. The dehalogenase encoding genes (fcb) were sequenced and found highly homologous to and organized as those of other 4-chlorobenzoic acid degrading Arthrobacter strains. The fcb genes were cloned and successfully expressed in the heterologous host Pseudomonas putida PaW340 and P. putida KT2442 upper TOL, which acquired the ability to grow on 4-chlorobenzoic acid and 4-chlorotoluene, respectively. The cloned dehalogenase displayed a high specificity for para-substituted haloaromatics with affinity Cl > Br > I > F, in the order.  相似文献   
7.
Mitochondrial malate dehydrogenase (mMDH) from the intestine is the NAD-linked oxidoreductase of the tricarboxylic acid cycle with the highest activity and response to vitamin D treatment in vitamin D-deficient chicks (?D). The aim of this study was to elucidate potential molecular mechanisms by which cholecalciferol or calcitriol enhances the activity of this enzyme. One group of animals used was composed of ?D and ?D treated with cholecalciferol or with calcitriol. A second group consisted of ?D and ?D supplemented with high Ca2+ diet. A third group included chicks receiving either a normal or a low Ca2+ diet. In some experiments, animals were injected with cycloheximide. Data showed that either vitamin D (cholecalciferol or calcitriol) or a low Ca2+ diet increases mMDH activity. High Ca2+ diet did not modify the intestinal mMDH activity from ?D. The mMDH activity from ?D remained unaltered when duodenal cells were exposed to 10?8 mol/L calcitriol for 15 min. The enhancement of mMDH activity by calcitriol was completely abolished by simultaneous cycloheximide injection to ?D. mMDH mRNA levels, detected by RT-PCR, indicate that calcitriol did not affect gene expression. In contrast, Western blots show that calcitriol enhanced the protein expression. In conclusion, calcitriol stimulates intestinal mMDH activity by increasing protein synthesis. No response of mMDH activity by rapid effects of calcitriol or activation through increment of serum Ca2+ was demonstrated. Consequently, ATP production would be increased, facilitating the Ca2+ exit from the enterocytes via the Ca2+-ATPase and Na+/Ca2+ exchanger, which participate in the intestinal Ca2+ absorption.  相似文献   
8.
9.
10.
Finding new treatments targeting cancer stem cells (CSCs) within a tumor seems to be critical to halt cancer and improve patient survival. Osteosarcoma is an aggressive tumor affecting adolescents, for which there is no second‐line chemotherapy. Uncovering new molecular mechanisms underlying the development of osteosarcoma and origin of CSCs is crucial to identify new possible therapeutic strategies. Here, we aimed to characterize genetically and molecularly the human osteosarcoma 3AB‐OS CSC line, previously selected from MG63 cells and which proved to have both in vitro and in vivo features of CSCs. Classic cytogenetic studies demonstrated that 3AB‐OS cells have hypertriploid karyotype with 71–82 chromosomes. By comparing 3AB‐OS CSCs to the parental cells, array CGH, Affymetrix microarray, and TaqMan® Human MicroRNA array analyses identified 49 copy number variations (CNV), 3,512 dysregulated genes and 189 differentially expressed miRNAs. Some of the chromosomal abnormalities and mRNA/miRNA expression profiles appeared to be congruent with those reported in human osteosarcomas. Bioinformatic analyses selected 196 genes and 46 anticorrelated miRNAs involved in carcinogenesis and stemness. For the first time, a predictive network is also described for two miRNA family (let‐7/98 and miR‐29a,b,c) and their anticorrelated mRNAs (MSTN, CCND2, Lin28B, MEST, HMGA2, and GHR), which may represent new biomarkers for osteosarcoma and may pave the way for the identification of new potential therapeutic targets. J. Cell. Physiol. 228: 1189–1201, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号