排序方式: 共有31条查询结果,搜索用时 15 毫秒
1.
Vasdev S Gill V Longerich L Parai S Gadag V 《Molecular and cellular biochemistry》2003,254(1-2):319-326
There is strong evidence that points to excess dietary salt as a major factor contributing to the development of hypertension. Salt sensitivity is associated with glucose intolerance and insulin resistance in both animal models and humans. In insulin resistance, impaired glucose metabolism leads to elevated endogenous aldehydes which bind to vascular calcium channels, increasing cytosolic [Ca2+]i and blood pressure. In an insulin resistant animal model of hypertension, spontaneously hypertensive rats (SHRs), dietary supplementation with lipoic acid lowers tissue aldehydes and plasma insulin levels and normalizes blood pressure. The objective of this study is to examine the effects of a high salt diet on tissue aldehydes, cytosolic [Ca2+]i and blood pressure in WKY rats and to investigate whether dietary supplementation with lipoic acid can prevent a salt induced increase in blood pressure. Starting at 7 weeks of age, WKY rats were divided into three groups of six animals each and treated for 10 weeks with diets as follows: WKY-normal salt (0.7% NaCl); WKY-high salt (8% NaCl); WKY-high salt + lipoic acid (8% NaCl diet + lipoic acid 500 mg/Kg feed). At completion, animals in the high salt group had elevated systolic blood pressure, platelet [Ca2+]i, and tissue aldehyde conjugates compared with the normal salt group and showed smooth muscle cell hyperplasia in the small arteries and arterioles of the kidneys. Dietary -lipoic acid supplementation in high salt-treated WKY rats normalized systolic blood pressure and cytosolic [Ca2+]i and aldehydes in liver and aorta. Kidney aldehydes and renal vascular changes were attenuated, but not normalized. 相似文献
2.
Veeresh Juturu 《Critical reviews in biotechnology》2016,36(6):967-977
Lactic acid is an important platform chemical for producing polylactic acid (PLA) and other value-added products. It is naturally produced by a wide spectrum of microbes including bacteria, yeast and filamentous fungi. In general, bacteria ferment C5 and C6 sugars to lactic acid by either homo- or hetero-fermentative mode. Xylose isomerase, phosphoketolase, transaldolase, l- and d-lactate dehydrogenases are the key enzymes that affect the ways of lactic acid production. Metabolic engineering of microbial strains are usually needed to produce lactic acid from unconventional carbon sources. Production of d-LA has attracted much attention due to the demand for producing thermostable PLA, but large scale production of d-LA has not yet been commercialized. Thermophilic Bacillus coagulans strains are able to produce l-lactic acid from lignocellulose sugars homo-fermentatively under non-sterilized conditions, but the lack of genetic tools for metabolically engineering them severely affects their development for industrial applications. Pre-treatment of agriculture biomass to obtain fermentable sugars is a pre-requisite for utilization of the huge amounts of agricultural biomass to produce lactic acid. The major challenge is to obtain quality sugars of high concentrations in a cost effective-way. To avoid or minimize the use of neutralizing agents during fermentation, genetically engineering the strains to make them resist acidic environment and produce lactic acid at low pH would be very helpful for reducing the production cost of lactic acid. 相似文献
3.
V. L. Sevala J. E. Steele 《Journal of comparative physiology. B, Biochemical, systemic, and environmental physiology》1991,161(4):349-355
Glycolytic intermediates and related metabolites were measured in the fat body of the American cockroach (Periplaneta americana) to locate the rate-limiting reactions that regulate glycolysis during the action of the corpus cardiacum (CC) in vitro.
相似文献
1. | The concentrations of glucose 1-phosphate, fructose 6-phosphate, and fructose 1,6-bisphosphate were approximately doubled after 30 min treatment with CC extract, whereas that of glucose 6-phosphate increased more than four-fold. Slightly lower increases occurred after 10 and 60 min treatment. |
2. | Triose phosphates, 2-phosphoglyceric acid, phosphoenolpyruvate and pyruvate were unaffected by CC extract. |
3. | Glycerol 3-phosphate, which is 20\2-200 times more concentrated than any of the other measured metabolites in the unstimulated tissue, is increased more than two-fold by CC extract. |
4. | NAD, NADP, and ATP were not significantly affected by CC extract. ADP was increased significantly by the gland extract. |
4.
High density lipophorin (HDLp) from the hemolymph of the German cockroach, Blattella germanica (L.) (Family Blattellidae), has an apparent molecular weight of 670kDa, with an isoelectric point of 7.0 and a density of 1.109g/ml. It is composed of two subunits, apolipoprotein-I (212kDa) and apolipoprotein-II (80kDa), and consists of 51.4% lipid, 46.2% protein and 2.4% carbohydrate. Hydrocarbons constitute 42.2% of the total lipids which also contain diacylglycerol, cholesterol and phospholipid. Lipophorin is rich in the amino acids glutamic acid, aspartic acid, lysine, valine, and leucine. Specificity of a polyclonal antibody was demonstrated by Western blotting and Ouchterlony immunodiffusion: the antiserum recognized native HDLp and apolipoprotein-I, but not apolipoprotein-II, purified vitellin, or other hemolymph proteins. It also recognized a protein in the hemolymph of Supella longipalpa (Blattellidae) but did not cross-react with hemolymph proteins from Periplaneta americana (Blattidae) or Diploptera punctata (Blaberidae). An enzyme-linked immunosorbent assay was developed to measure the HDLp titer in the hemolymph of adult females. The titer of HDLp, a juvenile hormone binding protein, exhibited no clear relationship to the changing titer of juvenile hormone in hemolymph. The hemolymph titer of hydrocarbon, which is also carried by HDLp, showed some functional relation to the concentration of HDLp in the hemolymph. Because it concurrently serves multiple functions in insect development and reproduction, lipophorin titer might covary with the titers of lipid ligands that occur at high concentrations and require extensive shuttling through the hemolymph. 相似文献
5.
Early prenatal or post natal exposure to environmental insults such as valproic acid (VPA), thalidomide and ethanol could
induce behavioral alterations similar to autistic symptoms. Bacopa monniera, a renowned plant in ayurvedic medicine is useful in several neurological disorders. The purpose of the present study was
to evaluate the effect of B. monniera on VPA induced autism. On 12.5 day of gestation the female pregnant rats were divided into control and VPA treated groups.
They were administered saline/VPA (600 mg/kg, i.p.) respectively and allowed to raise their own litters. Group I—male pups
of saline treated mothers. On postnatal day (PND) 21 VPA induced autistic male pups were divided into two groups (n = 6);
Group II—received saline and Group III—received B. monniera (300 mg/kg/p.o.) from PND 21–35. Behavioral tests (nociception, locomotor activity, exploratory activity, anxiety and social
behavior) were performed in both adolescence (PND 30–40) and adulthood (PND 90–110) period. At the end of behavioral testing
animals were sacrificed, brain was isolated for biochemical estimations (serotonin, glutathione, catalase and nitric oxide)
and histopathological examination. Induction of autism significantly affected normal behavior, increased oxidative stress
and serotonin level, altered histoarchitecture of cerebellum (decreased number of purkinje cells, neuronal degeneration and
chromatolysis) when compared with normal control group. Treatment with B. monniera significantly (p < 0.05) improved behavioral alterations, decreased oxidative stress markers and restored histoarchitecture of cerebellum.
In conclusion, the present study suggests that B. monniera ameliorates the autistic symptoms possibly due to its anti-anxiety, antioxidant and neuro-protective activity. 相似文献
6.
Mallikarjun S Beelagi SR Santosh Kumar Uma Bharathi Indrabalan Sharanagouda S Patil Ashwini Prasad KP Suresh Shiva Prasad Kollur Veeresh Santhebennur Jayappa Siddappa B Kakkalameli Chandrashekar Srinivasa Prabhakarareddy Anapalli Venkataravana Chandan Shivamallu 《Bioinformation》2021,17(4):479
Crimean-Congo hemorrhagic fever (CCHF) virus is one among the major zoonosis viral diseases that use the Hyalomma ticks as their transmission vector to cause viral infection to the human and mammalian community. The fatality of infectious is high across the world especially in Africa, Asia, Middle East, and Europe. This study regarding codon usage bias of S, M, and L segments of the CCHF virus pertaining to the host Homo sapiens, reveals in-depth information about the evolutionary characteristics of CCHFV. Relative Synonymous Codon Usage (RSCU), Effective number of codons (ENC) were calculated, to determine the codon usage pattern in each segment. Correlation analysis between Codon adaptation index (CAI), GRAVY (Hydrophobicity), AROMO (Aromaticity), and nucleotide composition revealed bias in the codon usage pattern. There was no strong codon bias found among any segments of the CCHF virus, indicating both the factors i.e., natural selection and mutational pressure shapes the codon usage bias. 相似文献
7.
Veeresh Juturu Christina Aust Jin Chuan Wu 《World journal of microbiology & biotechnology》2013,29(4):597-605
Acetyl xylan esterase (AXE) from basidiomycete Coprinopsis cinerea Okayama 7 (#130) was functionally expressed in Pichia pastoris with a C-terminal tag under the alcohol oxidase 1 (AOX1) promoter and secreted into the medium at 1.5 mg l?1. Its molecular mass was estimated to be 65.5 kDa based on the SDS-PAGE analysis, which is higher than the calculated molecular mass of 40 kDa based on amino acid composition. In-silico analysis of the amino acid sequence predicted two potential N-glycosylation sites. Results from PNGase F deglycosylation and mass spectrum confirmed the presence of N-glycosylation on the recombinant AXE with predominant N-glycans HexNAc2Hex9–16. The recombinant AXE showed best activity at 40 °C and pH 8. It showed not only acetyl esterase activity with a Km of 4.3 mM and a Vmax of 2.15 U mg?1 for hydrolysis of 4-nitrophenyl acetate but also a butyl esterase activity for hydrolysis of 4-nitrophenyl butyrate with a Km of 0.11 mM and Vmax of 0.78 U mg?1. The presence of two additional amino acid residues at its native N-terminus was found to help stabilize the enzyme against the protease cleavages without affecting its activity. 相似文献
8.
K.R. Prabhakar V.P. Veeresh K. Vipan M. Sudheer K.I. Priyadarsini R.B.S.S. Satish M.K. Unnikrishnan 《Phytomedicine》2006,13(8):591-595
The whole plant aqueous extract of Coronopus didymus Linn. was fractionated on the basis of polarity and resulting fractions were evaluated for free radical scavenging ability. The most non-polar fraction (CDF1) was found to be more active than other fractions in scavenging DPPH, ABTS(-), nitric oxide and hydroxyl radicals in steady-state conditions. Stop-flow spectrometric studies showed 58.13% inhibition of 100 microM DPPH at a concentration of 150 microg/ml of CDF1 in 1000 s and 32.31% scavenging of 960 microM ABTS(-) at a concentration of 300 microg/ml of CDF1 in 100 s. The reaction of CDF1 with hydroxyl radicals produced by pulse radiolysis showed a transient spectrum with absorption peaks at 320, 390 and 400 nm, indicating the presence of flavonoids/related components. Competition kinetics with potassium thiocyanate against scavenging of hydroxyl radicals showed a reactivity of 0.1326 against thiocyanate. CDF1 also protected against Fenton reagent-induced calf thymus DNA damage at a concentration of 400 mg/ml indicating it to be the most potent fraction. 相似文献
9.
Tumor necrosis factor related apoptosis-inducing ligand (TRAIL) induced apoptosis specifically in tumor cells. However, with approximately half of all known tumor lines being resistant to TRAIL, the identification of TRAIL sensitizers and their mechanism of action become critical to broadly use TRAIL as a therapeutic agent. In this study, we explored whether c-Met protein contributes to TRAIL sensitivity. We found a direct correlation between the c-Met expression level and TRAIL resistance. We show that the knock down c-Met protein, but not inhibition, sensitized brain tumor cells to TRAIL-mediated apoptosis by interrupting the interaction between c-Met and TRAIL cognate death receptor (DR) 5. This interruption greatly induces the formation of death-inducing signaling complex (DISC) and subsequent downstream apoptosis signaling. Using intracranially implanted brain tumor cells and stem cell (SC) lines engineered with different combinations of fluorescent and bioluminescent proteins, we show that SC expressing a potent and secretable TRAIL (S-TRAIL) have a significant anti-tumor effect in mice bearing c-Met knock down of TRAIL-resistant brain tumors. To our best knowledge, this is the first study that demonstrates c-Met contributes to TRAIL sensitivity of brain tumor cells and has implications for developing effective therapies for brain tumor patients. 相似文献
10.
Bacteriocins are low molecular weight peptides secreted by the predator bacterial cells to kill sensitive cells present in the same ecosystem competing for food and other nutrients. Exceptionally few bacteriocins along with their native antibacterial property also exhibit additional anti-viral and anti-fungal properties. Bacteriocins are generally produced by Gm+, Gm– and archaea bacteria. Bacteriocins from Gm?+?bacteria especially from lactic acid bacteria (LAB) have been thoroughly investigated considering their great biosafety and broad industrial applications. LAB expressing bacteriocins were isolated from fermented milk and milk products, rumen of animals and soil using deferred antagonism assay. Nisin is the only bacteriocin that has got FDA approval for application as a food preservative, which is produced by Lactococcus lactis subsp. Lactis. Its crystal structure explains that its antimicrobial properties are due to the binding of NH2 terminal to lipid II molecule inhibiting the peptidoglycan synthesis and carboxy terminal forming pores in bacterial cell membrane leading to cell lysis. The hinge region connecting NH2 and carboxy terminus has been mutated to generate mutant variants with higher antimicrobial activity. In a 50 ton fermentation of the mutant strain 3807 derived from L. lactis subsp. lactis ATCC 11454, 9,960?IU/mL of nisin was produced. Currently, high purity of nisin (>99%) is very expensive and hardly commercially available. Development of more advanced tools for cost-effective separation and purification of nisin would be commercially attractive. Chemical synthesis and heterologous expression of bacteriocins ended in low yields of pure proteins. At present, bacteriocins are almost solely applied in food industries, but they have a great potential to be used in other fields such as feeds, organic fertilizers, environmental protection and personal care products. The future of bacteriocins is largely dependent on getting FDA approval for use of other bacteriocins in addition to nisin to promote the research and applications. 相似文献